Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2025, Vol. 65 Issue (5): 882-890    DOI: 10.16511/j.cnki.qhdxxb.2024.21.024
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于多源传感的管道空间全位置焊枪位姿检测与控制
朱传辉1, 王子豪1, 朱志明1, 张天一1, 郭吉昌2
1. 清华大学 机械工程系, 北京 100084;
2. 煤炭科学研究总院 开采研究分院, 北京 100013
Detection and control of welding torch position and posture for all-position welding of the spatial pipeline based on multisource sensing
ZHU Chuanhui1, WANG Zihao1, ZHU Zhiming1, ZHANG Tianyi1, GUO Jichang2
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Coal Mining Branch, China Coal Research Institute, Beijing 100013, China
全文: PDF(9890 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 焊接过程智能化是提高长输油气管道现场铺设过程中管口对接外焊效率和接头合格率的有效途径。该文提出了基于多源传感的管道空间全位置焊枪位姿检测与控制算法。基于设计的组合激光结构光视觉传感与双轴倾角传感的多源传感器,提出了应用于管道空间全位置焊接的焊枪位姿检测和控制算法,实现了管道不同空间姿态下管段环形对接口任意位置处的焊接坡口尺寸、焊枪相对位姿及局部工件表面空间姿态的集成检测,构建了基于多源传感的五自由度管道智能化焊接系统,完成了焊枪位姿的智能化调控。试验结果表明,焊枪的姿态角反馈控制误差不超过0.8°,在管道全位置焊接过程中的焊枪横向位置跟踪偏差不超过0.25 mm,高度跟踪偏差不超过0.63 mm。该算法可以实现任意管道空间全位置焊接过程中焊枪位姿的准确调控,有效提高了管道外焊装备的智能化水平,并为焊接未知姿态曲面工件时焊枪的位姿调控提供了技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱传辉
王子豪
朱志明
张天一
郭吉昌
关键词 多源传感焊枪位姿工件绝对姿态管道焊接智能化    
Abstract:[Objective] Long-distance oil and gas transmission pipelines are important energy infrastructures. Currently, there are deficiencies in the automatic tracking accuracy and adaptability of external welding machines during pipeline construction. Operators often need to manually adjust external welding equipment (welding torch) to ensure the quality of the joints. Improving the intelligence of the welding process is an effective way to improve the efficiency and joint qualification rate during the on-site laying of long oil and gas pipelines. This study proposes a detection and control algorithm for the welding torch position and posture, applicable to all position welding of workpieces with arbitrary spatial postures.[Methods] This study is the first to design a multisource sensor that combines laser-structured light vision sensing with dual-axis tilt sensing. This multisource sensor combines the advantages of both types of sensing, enabling it to detect the relative position information of the welding torch, as well as the posture information of the welding torch and workpiece. Using this multisource sensor, the algorithm performs integrated calculations of the welding groove size parameters and relative position and posture parameters of the welding torch under any workpiece posture through local groove surface reconstruction. This method fully uses laser line data from images to ensure stable, applicable, and accurate parameter calculations. Through coordinate transformation, the spatial posture (αw and βw) of the local workpiece can be obtained. These integrated feature parameters provide the basis for controlling the welding torch's spatial position and posture in any pipeline space all-position welding. Next, a pipeline intelligent welding system with five degrees of freedom based on multisource sensing is constructed. The system, combined with the designed algorithm, achieves real-time control of the welding torch position and posture (e, H, α, and β), meeting welding process requirements and enabling high-quality weld formation control during arc welding.[Results] The experimental results show that the attitude angle feedback control error of the welding torch did not exceed 0.8°, the lateral position tracking deviation was within 0.25 mm, and the height tracking deviation did not exceed 0.63 mm during the pipeline all-position welding process. Compared to existing welding seam detection and tracking systems based on structured light-vision sensing, the proposed algorithm offers superior accuracy and stability. It detects not only the position deviation of the welding torch but also the posture of the welding joint on any unstructured surface with an unknown spatial posture.[Conclusions] The proposed algorithm for detecting and controlling the position and posture of the welding torch can be used to achieve accurate control during pipeline space all-position welding. This advancement significantly improves the intelligence level of pipeline external welding equipment and provides technical support for controlling the position and posture control of the welding torch when welding unknown posture-curved workpieces.
Key wordsmultisource sensing    position and posture of welding torch    absolute posture of workpiece    intelligent pipeline welding
收稿日期: 2024-05-13      出版日期: 2025-04-15
ZTFLH:  TP212.9  
基金资助:国家自然科学基金面上项目(51775301,52104162);北京市顺义区“北京市科技成果转化平台”建设专项项目
通讯作者: 朱志明,教授,E-mail:zzmdme@tsinghua.edu.cn     E-mail: zzmdme@tsinghua.edu.cn
作者简介: 朱传辉(1999—),男,博士研究生。
引用本文:   
朱传辉, 王子豪, 朱志明, 张天一, 郭吉昌. 基于多源传感的管道空间全位置焊枪位姿检测与控制[J]. 清华大学学报(自然科学版), 2025, 65(5): 882-890.
ZHU Chuanhui, WANG Zihao, ZHU Zhiming, ZHANG Tianyi, GUO Jichang. Detection and control of welding torch position and posture for all-position welding of the spatial pipeline based on multisource sensing. Journal of Tsinghua University(Science and Technology), 2025, 65(5): 882-890.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.21.024  或          http://jst.tsinghuajournals.com/CN/Y2025/V65/I5/882
[1] 高振宇,张慧宇,高鹏. 2022年中国油气管道建设新进展[J].国际石油经济, 2023, 31(3):16-23. GAO Z Y, ZHANG H Y, GAO P. New progress in China's oil and gas pipeline construction in 2022[J]. International Petroleum Economics, 2023, 31(3):16-23.(in Chinese)
[2] 李秋扬,赵明华,张斌,等. 2020年全球油气管道建设现状及发展趋势[J].油气储运, 2021, 40(12):1330-1337, 1348.LI Q Y, ZHAO M H, ZHANG B, et al. Current construction status and development trend of global oil and gas pipelines in 2020[J]. Oil&Gas Storage and Transportation, 2021, 40(12):1330-1337, 1348.(in Chinese)
[3] ROUT A, DEEPAK B B V L, BISWAL B B, et al. Weld seam detection, finding, and setting of process parameters for varying weld gap by the utilization of laser and vision sensor in robotic arc welding[J]. IEEE Transactions on Industrial Electronics, 2022, 69(1):622-632.
[4] ALVAREZ BESTARD G, ABSI ALFARO S C. Measurement and estimation of the weld bead geometry in arc welding processes:the last 50 years of development[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(9):444.
[5] YANG L, LIU Y H, PENG J Z. Advances techniques of the structured light sensing in intelligent welding robots:a review[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(3-4):1027-1046.
[6] PÉREZ L, RODRÍGUEZÍ, RODRÍGUEZ N, et al. Robot guidance using machine vision techniques in industrial environments:a comparative review[J]. Sensors, 2016, 16(3):335.
[7] ZHAO Z, LUO J, WANG Y Y, et al. Additive seam tracking technology based on laser vision[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(1):197-211.
[8] GUO J C, ZHU Z M, SUN B W, et al. A novel field box girder welding robot and realization of all-position welding process based on visual servoing[J]. Journal of Manufacturing Processes, 2021, 63:70-79.
[9] ZHU C H, ZHU Z M, KE Z J, et al. Internal parameters calibration of vision sensor and application of high precision integrated detection in intelligent welding based on plane fitting[J]. Sensors, 2022, 22(6):2117.
[10] 朱传辉,朱志明,柯挚捷,等.基于组合激光结构光的视觉传感器内参一体化标定方法[J].清华大学学报(自然科学版), 2022, 62(9):1516-1523. ZHU C H, ZHU Z M, KE Z J, et al. Integrated calibration of internal visual sensor parameters based on combined laser structured lights[J]. Journal of Tsinghua University (Science&Technology), 2022, 62(9):1516-1523.(in Chinese)
[11] LI W M, MEI F, HU Z, et al. Multiple weld seam laser vision recognition method based on the IPCE algorithm[J]. Optics&Laser Technology, 2022, 155:108388.
[12] GUO J C, ZHU Z M, SUN B W, et al. Principle of an innovative visual sensor based on combined laser structured lights and its experimental verification[J]. Optics&Laser Technology, 2019, 111:35-44.
[13] GUO J C, ZHU Z M, SUN B W, et al. A novel multifunctional visual sensor based on combined laser structured lights and its anti-jamming detection algorithms[J]. Welding in the World, 2019, 63(2):313-322.
[14] WANG H, CHI Y P, ZHAO X H, et al. Versatile robotic welding system integrating laser positioning, trajectory fitting and real-time tracking[J]. Optics&Laser Technology, 2024, 170:110250.
[15] SHAO W J, HUANG Y, ZHANG Y. A novel weld seam detection method for space weld seam of narrow butt joint in laser welding[J]. Optics&Laser Technology, 2018, 99:39-51.
[16] XUE B C, CHANG B H, PENG G D, et al. A vision based detection method for narrow butt joints and a robotic seam tracking system[J]. Sensors, 2019, 19(5):1144.
[17] 张天一,朱志明,朱传辉.基于视觉与重力融合传感的焊枪位姿反馈控制[J].焊接学报, 2021, 42(11):1-7. ZHANG T Y, ZHU Z M, ZHU C H. Position and pose feedback control of welding torch based on the fusion of vision and gravity sensing[J]. Transactions of the China Welding Institution, 2021, 42(11):1-7.(in Chinese)
[18] 朱志明,朱传辉,张天一.基于重力感应与视觉传感融合的待焊工件表面绝对空间姿态检测装置及方法:ZL2021109827166[P]. 2021-08-25. ZHU Z M, ZHU C H, ZHANG T Y. To-be-welded workpiece surface absolute space attitude detection device and method based on gravity sensing and visual sensing fusion:ZL2021109827166[P]. 2021-08-25.(in Chinese)
[19] SIOMA A. Geometry and resolution in triangulation vision systems[C]//Proceedings of the Conference on Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2020. Wilga, Poland:SPIE, 2020:115810Y.
[20] XIAO R Q, XU Y L, HOU Z, et al. An adaptive feature extraction algorithm for multiple typical seam tracking based on vision sensor in robotic arc welding[J]. Sensors and Actuators A:Physical, 2019, 297:111533.
[21] ZOU Y B, CHEN T, CHEN X Z, et al. Robotic seam tracking system combining convolution filter and deep reinforcement learning[J]. Mechanical Systems and Signal Processing, 2022, 165:108372.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn