Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2025, Vol. 65 Issue (5): 921-929    DOI: 10.16511/j.cnki.qhdxxb.2024.27.041
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
冲击式水轮机配水环的内流特性及水力损失分析
郭涛1, 甘文港1, 汪海洋2, 刘思远1
1. 昆明理工大学 建筑工程学院, 昆明 650500;
2. 浙江大学 海洋学院, 舟山 316021
Internal flow characteristics and loss mechanism of water supply component of Pelton turbine
GUO Tao1, GAN Wengang1, WANG Haiyang2, LIU Siyuan1
1. Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China;
2. Ocean College, Zhejiang University, Zhoushan 316021, China
全文: PDF(11695 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 配水环作为冲击式水轮机的给水机构,主要起着调节流量、诱导分流的作用,其特殊的结合结构使流体在管内流动时会产生流动分离、Dean涡等不良现象,从而诱发水力损失。针对这一问题,该文研究了配水环管流道内部流动的水力损失特性,采用SST k-ω湍流模型,基于熵产理论,得到了不同入口速度下流场的熵产分布,重点分析了主流道和分岔口2内产生水力损失的原因。结果表明,在整个配水环中,管内总熵产随着入口速度增加而增加,从210.999 W/K增加至4 614.980 W/K;而流体流经弯折处所产生的内外侧流动分离,在高速流动下更加明显。流场损失以脉动熵产占优,占比超过50%;水力损失主要发生在环管主流区及分岔口2处,约占总损失90%,而分岔口1、3位置损失较小;在分岔口2处,高速流体分流后向外侧挤压导致内侧形成低压而产生涡流,从而诱发了较为显著的水力损失;在弯管位置,因流动惯性而产生的流动分离是造成水力损失的主要原因。这些不良流动现象会在环管内外侧形成较大的压力梯度,使得流场出现较大幅度的压力脉动,进而影响流动稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭涛
甘文港
汪海洋
刘思远
关键词 冲击式水轮机水力损失熵产流动分离现象二次流    
Abstract:[Objective] The distributing pipe in a Pelton turbine serves as a crucial water supply component responsible for regulating flow and inducing diversion. Its special structure, however, can lead to adverse effects such as flow separation and Dean vortices causing hydraulic losses; these losses can vary with changes in the upstream head, further affecting the incoming flow conditions. Traditionally, the pressure drop method has been primarily utilized to assess these losses, yet it fails to pinpoint the exact locations where significant hydraulic losses occur.[Methods] This study investigates the hydraulic and loss characteristics of the distributing pipe. Utilizing the SST(shear stress transport) k-ω turbulence model, we simulate the flow inside the distributing pipe and analyze entropy production distribution based on the entropy production theory. Then, according to the distribution of entropy production rate and flow pattern, the reasons for the hydraulic loss in the main channel and bifurcation 2 were analyzed detailly. Entropy production—indicative of irreversible dissipative effects during fluid flow—effectively highlights high hydraulic loss areas by converting lost mechanical energy into internal energy.[Results] Results show a remarkable increase in total entropy production within the pipe, with values rising from 210.999 to 4 614.980. Specifically, entropy production in the main channel increases from 145.549 to 3 477.351, and in bifurcation 2 from 38.857 to 717.608. Under high-speed flow conditions, the separation between internal and external flows becomes distinct, particularly when fluid navigates bends. The hydraulic loss is dominated by fluctuation entropy production, accounting for >50%. The main flow zone and bifurcation 2 are the primary sites of hydraulic loss, accounting for approximately 90% of the total loss, whereas bifurcations 1 and 3 experience relatively small losses. [Conclusions] Comparative analysis of entropy generation rate contours, streamline plots, and pressure fluctuation curves highlights that high entropy generation areas experience significant pressure pulsations, accompanied by adverse flow phenomena such as Dean vortices and flow separation. At bifurcation 2, high-speed fluid is diverted and squeezed outward, creating a low-pressure vortex on the inner side, inducing significant hydraulic loss. At the bend position, the fluid tends to flow outward, resulting in high external pressure and low internal pressure distribution at the ring pipe and further in high hydraulic loss on the inside. These phenomena create large pressure gradients and significant pressure fluctuations, affecting flow stability. Furthermore, optimization strategies are proposed for the distributing pipe design, including the addition of flow-diversion baffles at bifurcation points to stabilize flow patterns, reduce vortices, and alleviate flow separation by increasing the number of nozzles and reducing curvature. This study employs numerical computation to investigate the mechanisms of hydraulic loss generation within the distributing pipe and meticulously delineates areas of high hydraulic losses, offering hydro turbine developers optimization strategies.
Key wordsPelton turbine    hydraulic loss    entropy production    flow separation phenomenon    secondary flow
收稿日期: 2024-07-08      出版日期: 2025-04-15
ZTFLH:  TK735  
基金资助:国家自然科学基金地区科学基金项目(52369017)
通讯作者: 郭涛,教授,E-mail:guotaoj@126.com     E-mail: guotaoj@126.com
作者简介: 甘文港(1999—),男,硕士研究生。
引用本文:   
郭涛, 甘文港, 汪海洋, 刘思远. 冲击式水轮机配水环的内流特性及水力损失分析[J]. 清华大学学报(自然科学版), 2025, 65(5): 921-929.
GUO Tao, GAN Wengang, WANG Haiyang, LIU Siyuan. Internal flow characteristics and loss mechanism of water supply component of Pelton turbine. Journal of Tsinghua University(Science and Technology), 2025, 65(5): 921-929.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.27.041  或          http://jst.tsinghuajournals.com/CN/Y2025/V65/I5/921
[1] HERWIG H, KOCK F. Local entropy production in turbulent shear flows:A tool for evaluating heat transfer performance[J]. Journal of Thermal Science, 2006, 15(2):159-167.
[2] HERWIG H, KOCK F. Direct and indirect methods of calculating entropy generation rates in turbulent convective heat transfer problems[J]. Heat and Mass Transfer, 2007, 43(3):207-215.
[3] HERWIG H, GLOSS D, WENTERODT T. A new approach to understanding and modelling the influence of wall roughness on friction factors for pipe and channel flows[J]. Journal of Fluid Mechanics, 2008, 613:35-53.
[4] GONG R Z, WANG H J, CHEN L X, et al. Application of entropy production theory to hydro-turbine hydraulic analysis[J]. Science China Technological Sciences, 2013, 56(7):1636-1643.
[5] LI D Y, WANG H J, QIN Y L, et al. Entropy production analysis of hysteresis characteristic of a pump-turbine model[J]. Energy Conversion and Management, 2017, 149:175-191.
[6] XU L H, GUO T, WANG W Q. Effects of vortex structure on hydraulic loss in a low head Francis turbine under overall operating conditions base on entropy production method[J]. Renewable Energy, 2022, 198:367-379.
[7] 曾鸿基,李正贵,李德友,等.水泵水轮机流场脉动与熵产率的关系[J].排灌机械工程学报, 2022, 40(8):777-784. ZENG H J, LI Z G, LI D Y, et al. Relationship between flow pulsation and entropy production rate of pump turbine[J]. Journal of Drainage and Irrigation Machinery Engineering, 2022, 40(8):777-784.(in Chinese)
[8] 王李科,姚亮,冯建军,等.水泵水轮机S特性区能量损失及流动特性研究[J].水利学报, 2024, 55(3):344-354, 366. WANG L K, YAO L, FENG J J, et al. Energy loss and flow characteristics analysis of a model pump turbine in the S-shape region[J]. Journal of Hydraulic Engineering, 2024, 55(3):344-354, 366.(in Chinese)
[9] 卢金玲,王李科,廖伟丽,等.基于熵产理论的水轮机尾水管涡带研究[J].水利学报, 2019, 50(2):233-241. LU J L, WANG L K, LIAO W L, et al. Entropy production analysis for vortex rope of a turbine model[J]. Journal of Hydraulic Engineering, 2019, 50(2):233-241.(in Chinese)
[10] YU Z F, WANG W Q, YAN Y, et al. Energy loss evaluation in a Francis turbine under overall operating conditions using entropy production method[J]. Renewable Energy, 2021, 169:982-999.
[11] YU Z F, YAN Y, WANG W Q, et al. Entropy production analysis for vortex rope of a Francis turbine using hybrid RANS/LES method[J]. International Communications in Heat and Mass Transfer, 2021, 127:105494.
[12] WANG H B, ZHOU D Q, YU A, et al. Analysis of cavitation-induced unsteady flow conditions in Francis turbines under high-load conditions[J]. Processes, 2023, 12(1):72.
[13] 徐广文,陈创新,朱俊昌,等.大型水斗式水轮机配水环管水力性能数值模拟[J].水利水电科技进展, 2008, 28(4):30-31, 36. XU G W, CHEN C X, ZHU J C, et al. Numerical simulation of hydraulic properties of water distribution pipe in large-scale Pelton turbine[J]. Advances in Science and Technology of Water Resources, 2008, 28(4):30-31, 36.(in Chinese)
[14] SEMLITSCH B. Effect of inflow disturbances in Pelton turbine distributor lines on the water jet quality[J]. International Journal of Multiphase Flow, 2024, 174:104786.
[15] ZENG C J, XIAO Y X, XU W, et al. Numerical analysis of Pelton nozzle jet flow behavior considering elbow pipe[J]. IOP Conference Series:Earth and Environmental Science, 2016, 49(2):022005.
[16] CHEN X Q, GUO Y X, ZHU G J. The influence of different runner widths on the performance of micro Pelton turbine[J]. Journal of Physics:Conference Series, 2023, 2528:012004.
[17] 孙启轩,谭磊.冲击式水轮机水斗设计方法及性能优化[J].清华大学学报(自然科学版), 2024, 64(5):852-859. SUN Q X, TAN L. Bucket design method and performance optimization of a Pelton turbine[J]. Journal of Tsinghua University (Science and Technology), 2024, 64(5):852-859.(in Chinese)
[18] ZHAO H R, XU B, TANG P, et al. Generation mechanism and control method of countertorque in the bucket of a Pelton turbine[J]. Physics of Fluids, 2023, 35(10):105133.
[19] BEJAN A. Entropy generation minimization:the method of thermodynamic optimization of finite-size systems and finite-time processes[M]. Boca Raton:CRC Press, 1996.
[20] 肖业祥,郑爱玲,韩凤琴,等. CFD法研究多喷嘴冲击式水轮机的射流干涉[J].华南理工大学学报(自然科学版), 2007, 35(3):66-70. XIAO Y X, ZHENG A L, HAN F Q, et al. CFD-based investigation into jet interference in multi-nozzle Pelton turbines[J]. Journal of South China University of Technology (Natural Science Edition), 2007, 35(3):66-70.(in Chinese)
[21] SCHMANDT B, HERWIG H. Internal flow losses:A fresh look at old concepts[J]. Journal of Fluids Engineering, 2011, 133(5):051201.
[1] 孙启轩, 谭磊. 冲击式水轮机水斗设计方法及性能优化[J]. 清华大学学报(自然科学版), 2024, 64(5): 852-859.
[2] 杨飞, 傅旭东. 垂向基于谱方法的三维弯道水流模型[J]. 清华大学学报(自然科学版), 2018, 58(10): 914-920.
[3] 李想, 顾春伟. 轴流压气机带冠静叶和不带冠静叶的比较研究[J]. 清华大学学报(自然科学版), 2015, 55(12): 1361-1366.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn