Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2025, Vol. 65 Issue (5): 930-939    DOI: 10.16511/j.cnki.qhdxxb.2025.21.005
  车辆与交通 本期目录 | 过刊浏览 | 高级检索 |
轮毂驱动汽车簧下质量负效应的被动控制
吴佩宝, 罗荣康, 俞志豪, 侯之超
清华大学 车辆与运载学院, 北京 100084
Passive control on the negative unsprung-mass effects with in-wheel motor driving vehicles
WU Peibao, LUO Rongkang, YU Zhihao, HOU Zhichao
School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
全文: PDF(6711 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 轮毂电机驱动凭借诸多优势成为电动汽车理想的驱动形式,然而簧下质量增加带来的负效应阻碍了其推广应用。该文基于前期研究揭示的轮毂电机驱动车辆簧下质量负效应的演化规律,选择电机吸振和两级悬架这2种含电机悬置的轮毂驱动构型,分别建立半车模型,开展车辆悬架与电机悬置参数优化以抑制簧下质量增加引发的负效应。为此,提出了中速段以质心垂向加速度和高速段以俯仰角加速度为主要目标、以悬架偏频和动挠度为约束条件的优化策略,采用NSGA-Ⅱ算法与熵权法,对车辆悬架和电机悬置参数开展了多目标联合优化。基于优化得到的车辆悬架与电机悬置参数开展车辆动力学仿真计算与对比分析。结果表明,相比轮毂电机固定连接构型,2种含电机悬置的构型均能明显改善车辆的平顺性以及电机振动。其中,电机吸振构型对车身垂向、俯仰振动和轮胎接地性能改善比较显著,而两级悬架构型在改善电机垂向振动方面更具优势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴佩宝
罗荣康
俞志豪
侯之超
关键词 轮毂电机驱动负效应电机吸振构型两级悬架构型多目标优化    
Abstract:[Objective] In-wheel motor drive systems offer significant advantages for electric vehicles, including large chassis space, high transmission efficiency, and great control flexibility. However, in current mainstream in-wheel motor driving vehicles, the unsprung mass is significantly increased because the motor or the driving unit is rigidly connected to the wheel hub. The increased unsprung mass not only deteriorates vehicle ride comfort and road holding performance, but also results in heavy motor vibration. To mitigate these negative effects, configurations with suspended motor or driving unit have been proposed. It is thus desirable to explore the potential of these new configurations in this regard.[Methods] This paper aims to mitigate the negative effects of unsprung mass by optimizing vehicle and motor suspension parameters simultaneously. To this end, it examines two typical in-wheel motor drive configurations with motor suspension: the dynamic vibration absorber configuration and the two-stage suspension configuration. Half-vehicle models are established respectively for both configurations, and key indices for vehicle dynamic performance are selected or defined. Drawing on earlier studies on how the increased unsprung mass impacts vehicle performance at various speeds, and considering the trade-off among ride comfort, road holding, and motor vibration, a multiobjective optimization strategy is proposed for parameter optimization of vehicle suspension and motor suspension. In the strategy, the goal is to minimize body vertical acceleration, wheel dynamic load, and motor acceleration at medium speeds while reducing body pitch acceleration, wheel dynamic load, and motor acceleration at high speeds. Constraints include the natural frequency and dynamic deflection of the vehicle suspension. Using the NSGA-Ⅱ algorithm, Pareto optimal solution sets are derived respectively for the two configurations. The entropy weight method is then applied to determine the optimal parameters for vehicle and motor suspensions. With the optimal suspension parameters, dynamic simulations are conducted on a random road, and the dynamic performance is evaluated based on the predefined indices.[Results] The results indicate that, compared to the fixed hub motor configuration, both motor suspension configurations achieve a substantial performance enhancement in vehicle ride comfort, road holding, and motor vibration. Specifically, the dynamic vibration absorber configuration delivers greater enhancements in vehicle body vertical and pitch vibrations, as well as wheel dynamic load. Specifically, it reduces body vertical and pitch accelerations by 36.9% and 33.09%, respectively, at medium and high speeds. The wheel dynamic load is decreased by 18.42% and 18.55% at medium and high speeds, respectively. By contrast, the two-stage suspension configuration excels in reducing motor vertical vibration. It reduces motor vertical acceleration by 67.48% and 65.43% at medium and high speeds, respectively. [Conclusions] This paper presents a passive control approach to address the negative effects of unsprung mass by utilizing motor suspension configurations. The in-wheel motor drive configurations with motor suspension demonstrate significant potential for improving vehicle dynamic performance. This research serves as a valuable resource for the design of in-wheel motor driving vehicles.
Key wordsin-wheel motor drive    negative effect    dynamic vibration absorber    two-stage suspension    multiobjective optimization
收稿日期: 2024-11-12      出版日期: 2025-04-15
ZTFLH:  U461.6  
通讯作者: 侯之超,教授,E-mail:houzc@tsinghua.edu.cn     E-mail: houzc@tsinghua.edu.cn
作者简介: 吴佩宝(1995—),男,博士研究生。
引用本文:   
吴佩宝, 罗荣康, 俞志豪, 侯之超. 轮毂驱动汽车簧下质量负效应的被动控制[J]. 清华大学学报(自然科学版), 2025, 65(5): 930-939.
WU Peibao, LUO Rongkang, YU Zhihao, HOU Zhichao. Passive control on the negative unsprung-mass effects with in-wheel motor driving vehicles. Journal of Tsinghua University(Science and Technology), 2025, 65(5): 930-939.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2025.21.005  或          http://jst.tsinghuajournals.com/CN/Y2025/V65/I5/930
[1] MURATA S. Innovation by in-wheel-motor drive unit[J]. Vehicle System Dynamics, 2012, 50(6):807-830.
[2] VOS R, BESSELINK I J M, NIJMEIJER H. Influence of in-wheel motors on the ride comfort of electric vehicles[C]//Proceedings of the 10th International Symposium on Advanced Vehicle Control. Loughborough, UK:AVEC, 2010:835-840.
[3] NAGAYA G, WAKAO Y, ABE A. Development of an in-wheel drive with advanced dynamic-damper mechanism[J]. JSAE Review, 2003, 24(4):477-481.
[4] 童炜.轮毂驱动电动车垂向特性及电机振动研究[D].北京:清华大学, 2013.TONG W. Research on the vertical performance and motor vibration of electrical vehicle driven by in-wheel motors[D]. Beijing:Tsinghua University, 2013.(in Chinese)
[5] 吴佩宝,罗荣康,俞志豪,等.基于半车模型的轮毂驱动车辆簧下质量影响研究[J].清华大学学报(自然科学版), 2024, 64(8):1445-1455.WU P B, LUO R K, YU Z H, et al. Research on the unsprung mass effect of in-wheel motor drives based on a half-vehicle model[J]. Journal of Tsinghua University (Science&Technology), 2024, 64(8):1445-1455.(in Chinese)
[6] NAGAYA G. In-wheel motor system:US7287611[P]. 2007-10-30.
[7] MENG L S, ZOU Y J, QIN Y D, et al. A new electric wheel and optimization on its suspension parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2020, 234(12):2759-2770.
[8] 侯之超,罗荣康,吴佩宝.平行偏心联轴器及电动轮:112283257A[P]. 2021-01-29.HOU Z C, LUO R K, WU P B. Parallel eccentric coupling and electric wheel:112283257A[P]. 2021-01-29.(in Chinese)
[9] FENG T, SHU L. Game-based multiobjective optimization of suspension system for in-wheel motor drive electric vehicle[J]. Mathematical Problems in Engineering, 2021, 2021(1):5589199.
[10] DREXLER D, HOU Z C. Simulation analysis on vertical vehicle dynamics of three in-wheel motor drive configurations[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2024, 238(8):2105-2119.
[11] WU P B, LUO R K, YU Z H, et al. Evaluation of the unsprung mass effect on ride comfort of in-wheel motor driving vehicles[J/OL]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering.(2024-09-01)[2024-11-12] . DOI:10.1177/09544070241288615.
[12] 余志生.汽车理论[M]. 4版.北京:机械工业出版社, 2009. YU Z S. Automobile theory[M]. 4th ed. Beijing:China Machine Press, 2009.(in Chinese)
[13] 郑金华.多目标进化优化[M].北京:科学出版社, 2017.ZHENG J H. Multi-objective evolutionary optimization[M]. Beijing:Science Press, 2017.(in Chinese)
[14] 程启月.评测指标权重确定的结构熵权法[J].系统工程理论与实践, 2010, 30(7):1225-1228.CHENG Q Y. Structure entropy weight method to confirm the weight of evaluating index[J]. Systems Engineering-Theory&Practice, 2010, 30(7):1225-1228.(in Chinese)
[1] 吴佩宝, 罗荣康, 俞志豪, 侯之超. 基于半车模型的轮毂驱动车辆簧下质量影响研究[J]. 清华大学学报(自然科学版), 2024, 64(8): 1445-1455.
[2] 郝宇星, 吴宏宇, 张玉玲, 吴青建, 谭莉杰, 阎绍泽. 水下滑翔机翼面沟槽参数的多目标设计优化[J]. 清华大学学报(自然科学版), 2024, 64(12): 2105-2114.
[3] 张潇月, 李玥, 王晨杨, 陈正侠, 贾海峰. 面向不同需求的未来社区海绵源头设施布局方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1483-1492.
[4] 代鑫, 陈举师, 陈涛, 黄弘, 李志鹏, 余水平. 抽水蓄能电站应急排水多目标优化方法及算例分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1558-1565.
[5] 檀添, 陈凯楠, 林秋琼, 蒋烨, 赵争鸣. 多接收端无线电能传输系统动态特性分析及多目标参数优化[J]. 清华大学学报(自然科学版), 2021, 61(10): 1066-1078.
[6] 桂良进, 朱升发, 陈伟博, 周驰, 范子杰. 波形套的轴向受压分析与优化设计[J]. 清华大学学报(自然科学版), 2019, 59(3): 219-227.
[7] 薛春辉, 董玉杰. 自然循环熔盐球床堆中间换热器的优化设计[J]. 清华大学学报(自然科学版), 2018, 58(5): 445-449.
[8] 孙智源, 陆化普. 考虑交通大数据的交通检测器优化布置模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 743-750.
[9] 张书玮, 罗禹贡, 李克强. 动态交通环境下的纯电动车辆多目标出行规划[J]. 清华大学学报(自然科学版), 2016, 56(2): 130-136.