Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2025, Vol. 65 Issue (5): 948-958    DOI: 10.16511/j.cnki.qhdxxb.2024.21.023
  车辆与交通 本期目录 | 过刊浏览 | 高级检索 |
考虑驾驶员差异的自动驾驶车辆换道规划方法
李浩然1,2,3, 鲁云鹏1, 许述财3, 郑四发3, 孙川2
1. 武汉科技大学 汽车与交通工程学院, 武汉 430063;
2. 清华大学苏州汽车研究院, 苏州, 215299;
3. 清华大学 车辆与运载学院, 北京 100084
Lane-changing planning method for autonomous vehicles considering variability among drivers
LI Haoran1,2,3, LU Yunpeng1, XU Shucai3, ZHENG Sifa3, SUN Chuan2
1. School of Automotive and Transportation Engineering, Wuhan University of Science and Technology, Wuhan 430063, China;
2. Tsinghua University Suzhou Automotive Research Institute, Suzhou 215299, China;
3. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
全文: PDF(7166 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 当前自动驾驶技术在决策和规划层面较少考虑驾驶员之间的个体差异,这在实际道路交通中是一个显著的缺陷。该文针对常见的换道驾驶场景,提出了一种考虑驾驶员差异的自动驾驶车辆换道规划方法。首先,基于自然驾驶实验数据,采用统计学的样本检验方法分析了换道场景下不同驾驶员在各项关键变量指标上的差异,并提取出最能体现驾驶员个性化风格的特征指标。之后,根据换道场景的特性,构建了人工势场模型,并利用这些个性化指标对模型参数进行差异化标定。采用二次方程和线性平滑方法对原始路径点进行拟合与平滑,实现了个性化的换道路径规划。最后,鉴于不同驾驶员在车速控制上的差异,提出了一种基于五次多项式的换道车速规划策略。仿真实验结果显示,该规划方法能够生成满足驾驶员个性化需求的路径和车速,有助于推动自动驾驶技术的进一步发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李浩然
鲁云鹏
许述财
郑四发
孙川
关键词 自动驾驶路径规划车速规划驾驶风格    
Abstract:[Objective] In the context of the swift progression of autonomous driving technology, the widespread reliance of current systems on uniform behavioral models for decision-making and path planning is a crucial concern. This generalized approach often disregards variations in driving behavior among different drivers, making it challenging to achieve driving behavior that aligns with drivers' expectations in complex and dynamic traffic scenarios. Consequently, a decrease in comfort and trust is observed in autonomous vehicles. This study focuses on lane changing, a common yet critical driving maneuver, aiming to optimize planning strategies by incorporating drivers' characteristics to match individual driving styles.[Methods] This study comprehensively analyzes data derived from naturalistic driving experiments. Kalman filtering is used to detect and eliminate anomalies in raw data, thereby reducing noise interference. The integration of temporal constraints into the fuzzy C-means clustering algorithm ensures the preservation of chronological order in the clustered data, which is essential for analyzing sequential events such as lane change maneuvers. Lane changing requires lateral and longitudinal vehicle control with distinct operational characteristics across different phases of the maneuver. By clustering the entire lane-changing process data into three major categories, C1, C2, and C3, representing the preparation, execution, and completion stages of lane changing, respectively, this study aims to analyze disparities in driver behavior during these distinct phases. According to the characteristics of lane-changing scenarios, relevant variables are selected for in-depth examination. Independent sample t-tests are then conducted among different drivers for each variable, and variables with a high proportion of insignificant t-values are eliminated. This process helps identify personalized indicators that reflect driver-specific traits during lane changing. Subsequently, an artificial potential field (APF) model is established for the lane-changing scenario. The APF method uses virtual attractive and repulsive forces to guide the vehicle toward a path of decreasing potential energy, effectively avoiding obstacles while moving toward the target position. Variations in the APF parameters lead to different planning paths. By leveraging the extracted personalized indicator, the APF model for lane changing is customized, yielding paths that align with individual driving styles. Another pivotal consideration is the planning of lane-changing speeds. Given the notable variations in the speed preferences of drivers, this study proposes a lane-changing speed planning algorithm based on a quintic polynomial function. This ensures that the mean duration of acceleration and the maximum acceleration limit during the execution phase align with each driver's speed control habits and that a smooth velocity profile is maintained throughout the lane-changing maneuver. [Conclusions] This study proposes a lane-changing planning method for autonomous vehicles that considers driver differences. The simulation results confirm that the proposed personalized lane-changing planning approach not only produces paths that align with individual driving styles but also regulates lane-changing velocities in accordance with each driver's operational habits. By quantifying behavioral variations, developing personalized APF models, and implementing customized speed planning strategies, this study exemplifies how to tackle individualization challenges in autonomous driving. This study represents a step forward in advancing autonomous vehicle technology toward a human-centric and intelligent future.
Key wordsautonomous driving    path planning    speed planning    driving styles
收稿日期: 2024-04-19      出版日期: 2025-04-15
ZTFLH:  U469.79  
基金资助:江阴-清华创新引领行动计划(20222000555);中国科学院力学研究所重点基础研究项目(2022-JCJQ-ZD-168-04-01);苏州科技计划项目(SYC2022078);江苏省自然科学基金项目(BK20220243);中国博士后科学基金项目(2023M742033)
通讯作者: 许述财,副研究员,E-mail:xushc@tsinghua.edu.cn     E-mail: xushc@tsinghua.edu.cn
作者简介: 李浩然(1988—),男,博士后。
引用本文:   
李浩然, 鲁云鹏, 许述财, 郑四发, 孙川. 考虑驾驶员差异的自动驾驶车辆换道规划方法[J]. 清华大学学报(自然科学版), 2025, 65(5): 948-958.
LI Haoran, LU Yunpeng, XU Shucai, ZHENG Sifa, SUN Chuan. Lane-changing planning method for autonomous vehicles considering variability among drivers. Journal of Tsinghua University(Science and Technology), 2025, 65(5): 948-958.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.21.023  或          http://jst.tsinghuajournals.com/CN/Y2025/V65/I5/948
[1] 高在峰,李文敏,梁佳文,等.自动驾驶车中的人机信任[J].心理科学进展, 2021, 29(12):2172-2183. GAO Z F, LI W M, LIANG J W, et al. Trust in automated vehicles[J]. Advances in Psychological Science, 2021, 29(12):2172-2183.(in Chinese)
[2] HARTWICH F, BEGGIATO M, KREMS J F. Driving comfort, enjoyment and acceptance of automated driving-effects of drivers'age and driving style familiarity[J]. Ergonomics, 2018, 61(8):1017-1032.
[3] NATARAJAN M, AKASH K, MISU T. Toward adaptive driving styles for automated driving with users'trust and preferences[C]//Proceedings of the 2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI). Sapporo, Japan:ACM/IEEE, 2022:940-944.
[4] 赵蕾蕾,李翀,季林红,等.基于虚拟现实的自动驾驶模式中晕动受试者的脑电特征[J].清华大学学报(自然科学版), 2020, 60(12):993-998. ZHAO L L, LI C, JI L H, et al. EEG characteristics of motion sickness subjects in automatic driving mode based on virtual reality tests[J]. Journal of Tsinghua University (Science and Technology), 2020, 60(12):993-998.(in Chinese)
[5] 朱冰,贾士政,赵健,等.自动驾驶车辆决策与规划研究综述[J].中国公路学报, 2024, 37(1):215-240. ZHU B, JIA S Z, ZHAO J, et al. Review of research on decision-making and planning for automated vehicles[J]. China Journal of Highway and Transport, 2024, 37(1):215-240.(in Chinese)
[6] 刘通,付锐,马勇,等.考虑驾驶人风格的跟车预警规则研究[J].中国公路学报, 2020, 33(2):170-180. LIU T, FU R, MA Y, et al. Car-following warning rules considering driving styles[J]. China Journal of Highway and Transport, 2020, 33(2):170-180.(in Chinese)
[7] 胡春燕,曲大义,赵梓旭,等.考虑前车驾驶风格的改进自适应巡航控制跟驰模型及仿真[J].济南大学学报(自然科学版), 2023, 37(3):331-338. HU C Y, QU D Y, ZHAO Z X, et al. Improved adaptive cruise control car-following model and simulation considering driving styles of leading car[J]. Journal of University of Jinan (Science and Technology), 2023, 37(3):331-338.(in Chinese)
[8] OZKAN M F, MA Y. Personalized adaptive cruise control and impacts on mixed traffic[C]//Proceedings of the 2021 American Control Conference (ACC). New Orleans, LA, USA:IEEE, 2021:412-417.
[9] LI G F, YANG Y F, ZHANG T R, et al. Risk assessment based collision avoidance decision-making for autonomous vehicles in multi-scenarios[J]. Transportation Research Part C:Emerging Technologies, 2021, 122:102820.
[10] 吕凯光,李旋,韩天园,等.基于驾驶风格识别的AEB控制策略[J].汽车技术, 2021(5):16-21. LV K G, LI X, HAN T Y, et al. AEB control strategy based on driving style recognition[J]. Automobile Technology, 2021(5):16-21.(in Chinese)
[11] 黄晶,蓟仲勋,彭晓燕,等.考虑驾驶人风格的换道轨迹规划与控制[J].中国公路学报, 2019, 32(6):226-239, 247. HUANG J, JI Z X, PENG X Y, et al. Driving style adaptive lane-changing trajectory planning and control[J]. China Journal of Highway and Transport, 2019, 32(6):226-239, 247.(in Chinese)
[12] 张新锋,汪亚君,张浩杰,等.考虑驾驶风格的高速行驶工况自动换道决策规划研究.汽车技术.(2024-01-19).https://doi.org/10.19620/j.cnki.1000-3703.20230357.ZHANG X F, WANG Y J, ZHANG H J, et al. Research on high-speed automatic lane change decision-making and planning considering driving style. Automobile Technology.(2024-01-19).https://doi.org/10.19620/j.cnki.1000-3703.20230357.(in Chinese)
[13] NIE Z F, FARZANEH H. Energy-efficient lane-change motion planning for personalized autonomous driving[J]. Applied Energy, 2023, 338:120926.
[14] YANG W, LI C, ZHOU Y P. A path planning method for autonomous vehicles based on risk assessment[J]. World Electric Vehicle Journal, 2022, 13(12):234.
[15] ELBANHAWI M, SIMIC M, JAZAR R. In the passenger seat:Investigating ride comfort measures in autonomous cars[J]. IEEE Intelligent Transportation Systems Magazine, 2015, 7(3):4-17.
[16] MA Z, ZHANG Y Q. Drivers trust, acceptance, and takeover behaviors in fully automated vehicles:Effects of automated driving styles and driver's driving styles[J]. Accident Analysis&Prevention, 2021, 159:106238.
[17] 方鸣.考虑个性化驾驶员的信号口车速引导研究[J].建模与仿真, 2023, 12(3):3162-3173. FANG M. A Study of speed guidance at signal gates considering individualized drivers[J]. Modeling and Simulation, 2023, 12(3):3162-3173.(in Chinese)
[18] 陈峥,张玉果,沈世全,等.城市郊区道路跟车条件下智能网联汽车速度规划[J].中国公路学报, 2023, 36(6):298-310. CHEN Z, ZHANG Y G, SHEN S Q, et al. Speed planning of intelligent and connected vehicle under following conditions of suburban road scenarios[J]. China Journal of Highway and Transport, 2023, 36(6):298-310.(in Chinese)
[19] 刘平,李振鹏,蒋平,等.一种新的V2I下车速规划与模型预测控制方法[J].重庆交通大学学报(自然科学版), 2022, 41(7):27-33. LIU P, LI Z P, JIANG P, et al. A new method for vehicle speed planning and model prediction control under V2I[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(7):27-33.(in Chinese)
[20] ISHIBASHI M, OKUWA M, DOI S, et al. Indices for characterizing driving style and their relevance to car following behavior[C]//Proceedings of the SICE Annual Conference 2007. Takamatsu, Japan:IEEE, 2007:1132-1137.
[21] 侯海晶,金立生,关志伟,等.驾驶风格对驾驶行为的影响[J].中国公路学报, 2018, 31(4):18-27. HOU H J, JIN L S, GUAN Z W, et al. Effects of driving style on driver behavior[J]. China Journal of Highway and Transport, 2018, 31(4):18-27.(in Chinese)
[22] 李浩然.智能汽车个性化驾驶行为决策与运动控制方法研究[D].武汉:武汉理工大学, 2021. LI H R. Personalized driving decision-making and motion control[D]. Wuhan:Wuhan University of Technology, 2021.(in Chinese)
[23] LI H R, LU Y P, ZHENG H T, et al. Analysis of naturalistic driving behavior for personalized autonomous vehicle[C]//Proceedings of the 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC). Bilbao, Spain:IEEE, 2023:2106-2111.
[24] 柏海舰,申剑峰,卫立阳.无人车"三阶段"换道轨迹规划过程分析[J].合肥工业大学学报(自然科学版), 2019, 42(5):577-584, 676. BAI H J, SHEN J F, WEI L Y. Three-stage lane-changing trajectory planning method for automated vehicles[J]. Journal of Hefei University of Technology (Natural Science), 2019, 42(5):577-584, 676.(in Chinese).
[1] 蒋慧灵, 方伟, 徐天锋, 徐浩轩, 陈兰, 周亮, 邓青. 基于Dijkstra算法的室内疏散最优路径规划模型[J]. 清华大学学报(自然科学版), 2025, 65(4): 742-749.
[2] 杨倩, 王飞跃, 卢佳节, 王籽幻, 马波. 基于需求紧迫度的约束性应急物资车辆路径模型[J]. 清华大学学报(自然科学版), 2024, 64(6): 1082-1088.
[3] 张佳庆, 孙韬, 蒋弘瑞, 段君瑞, 缪煦扬, 纪杰. 基于林火风险的高压输电线路无人机巡检路径规划[J]. 清华大学学报(自然科学版), 2024, 64(5): 911-921.
[4] 李根, 翟伟, 黄海博, 任皎龙, 王登忠, 邬岚. 基于多元自适应回归样条的汇合决策行为模型[J]. 清华大学学报(自然科学版), 2024, 64(1): 55-62.
[5] 毕军, 杜宇佳, 王永兴, 左小龙. 基于用户综合满意度的电动汽车充电诱导优化模型[J]. 清华大学学报(自然科学版), 2023, 63(11): 1750-1759.
[6] 田野, 裴华鑫, 晏松, 张毅. 车路协同环境下行车风险场模型的扩展与应用[J]. 清华大学学报(自然科学版), 2022, 62(3): 447-457.
[7] 何启嘉, 王启明, 李佳璇, 王正佳, 王通. 基于优势竞争网络的转运机器人路径规划[J]. 清华大学学报(自然科学版), 2022, 62(11): 1751-1757.
[8] 王庭晗, 罗禹贡, 刘金鑫, 李克强. 基于考虑状态分布的深度确定性策略梯度算法的端到端自动驾驶策略[J]. 清华大学学报(自然科学版), 2021, 61(9): 881-888.
[9] 崔俊云, 陈迪, 袁野, 马玉亮, 王国仁. 空间众包中在线路径规划算法[J]. 清华大学学报(自然科学版), 2020, 60(8): 672-682.
[10] 赵蕾蕾,李翀,季林红,杨铁牛. 基于虚拟现实的自动驾驶模式中晕动受试者的脑电特征[J]. 清华大学学报(自然科学版), 2020, 60(12): 993-998.
[11] 张书玮, 冯桂璇, 樊月珍, 万爽, 罗禹贡. 基于信息交互的大规模电动汽车充电路径规划[J]. 清华大学学报(自然科学版), 2018, 58(3): 279-285.
[12] 奇格奇, 吴建平, 杜怡曼, 贾宇涵. 快速城镇化背景下的驾驶风格多样性分析[J]. 清华大学学报(自然科学版), 2016, 56(12): 1320-1326.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn