Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2025, Vol. 65 Issue (5): 992-999    DOI: 10.16511/j.cnki.qhdxxb.2024.21.030
  建筑工程 本期目录 | 过刊浏览 | 高级检索 |
住宅多区域动态自然通风换气量的仿真研究
简毅文1,2, 盖鑫1, 樊春苗1, 刘书伟1
1. 北京工业大学 建筑工程学院, 北京 100124;
2. 绿色建筑环境与节能技术北京市重点实验室, 北京 100124
Simulation study of dynamic air exchange rates in multizone environments in naturally ventilated residences
JIAN Yiwen1,2, GAI Xin1, FAN Chunmiao1, LIU Shuwei1
1. College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China;
2. Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing 100124, China
全文: PDF(6190 KB)   HTML 
输出: BibTeX | EndNote (RIS)      
摘要 建立高效准确的自然通风换气量的仿真计算方法是开展住宅自然通风研究的关键。然而,住宅的自然通风呈现强随机性、高动态性和多区域性的特点,增加了获取住宅自然通风换气状况的难度。该文建立了一种住宅多区域动态自然通风换气量的仿真计算方法,以人体释放CO2作为示踪气体,基于各态遍历的思路和空气质量守恒原则,建立多区域空气流动模型,对每个区域的CO2瞬态质量守恒方程实施Kalman滤波法,进而判断获取各时刻的空气流动模型和自然通风换气量。通过在可控风量和气流方向的实验环境中的实测分析,验证了该方法对住宅多区域动态自然通风换气量预测的可靠性;针对实际住宅计算了多区域动态自然通风换气量,评价了该方法在工程实际中的适用性。该研究将有助于住宅室内环境的准确预测和室内环境健康状况的合理评价。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
简毅文
盖鑫
樊春苗
刘书伟
关键词 住宅自然通风多区域动态Kalman滤波    
Abstract:[Objective] Natural ventilation in real residential environments is characterized by dynamic multizone airflow. Ignoring either of the two features can lead to inaccurate assessments of natural ventilation in residences. The multiple tracer gas method has traditionally been used to investigate this multizone airflow within residential settings. However, it is impractical for large-scale applications owing to the high costs associated with the measurement process, potential disruption to occupants' daily lives, and the need for stable ventilation conditions. As a result, accurately measuring air exchange rates remains a significant challenge. A more in-depth study of the measurement method for dynamic multizone airflows is urgently required. This study proposes a simulation method for identifying dynamic multizone airflows in naturally ventilated residences. [Methods] This method utilizes CO2 emitted by occupants as a tracer gas to study multizone airflow in residential buildings. It considers all feasible multizone airflow patterns using a traversal approach and the air volume conservation principle. Furthermore, to strike an optimal balance between effectively tracking the dynamic characteristics of natural ventilation and minimizing noise sensitivity, a transient indoor CO2 mass balance equation associated with the Kalman filter is applied to each zone. The resulting time series of air exchange rates can be presented for each airflow pattern. These rates are then evaluated to identify the pattern that most closely aligns with the actual airflow pattern and the corresponding outdoor-indoor air exchange rates and interzonal airflow rates. Furthermore, two validation experiments were conducted in an unoccupied two-bedroom apartment with controllable ventilation patterns to validate the method. Subsequently, the method was employed in an occupied apartment, utilizing measured indoor CO2 concentrations and occupancy data for each zone to produce the time series of air exchange rates. [Results] The comparison among the calculated air exchange rates using the proposed method and experimental data indicates that 85% of the calculated values have absolute errors within ±0.2 h-1, and 95% fall within ±0.4 h-1. Furthermore, 75% of the calculated values have relative errors within ±10%, and 95% are within ±20%. The calculated air exchange rates and airflow directions closely match the experimental conditions, indicating that the method proposed in this study effectively represents the multizone aspects of natural ventilation in residential environments. Moreover, the applicability of the method to real residences is demonstrated through its application in an occupied apartment. The calculated air exchange rates for each zone during the measurement period, after filtering out anomalous results, fall within a reasonable range. These results present the airflow patterns that characterize the multizone nature of dynamic natural ventilation. [Conclusions] Natural ventilation is complex owing to its multizone nature and time dependence, leading to data scarcity. This method effectively addresses this gap by quantifying the multizone representation of dynamic airflows in residences on a large scale. Understanding indoor–outdoor air exchange rates and interzonal airflow rates is pivotal, as these parameters significantly influence indoor thermal conditions and air quality. In this regard, this study offers a valuable and practical approach to comprehensively understanding natural ventilation and its effects on occupants' health conditions in real residential environments.
Key wordsresidence    natural ventilation    multizone    dynamic    Kalman filter
收稿日期: 2024-04-25      出版日期: 2025-04-15
ZTFLH:  TU834.1  
作者简介: 简毅文(1967—),女,教授,E-mail:jianyiwen@bjut.edu.cn
引用本文:   
简毅文, 盖鑫, 樊春苗, 刘书伟. 住宅多区域动态自然通风换气量的仿真研究[J]. 清华大学学报(自然科学版), 2025, 65(5): 992-999.
JIAN Yiwen, GAI Xin, FAN Chunmiao, LIU Shuwei. Simulation study of dynamic air exchange rates in multizone environments in naturally ventilated residences. Journal of Tsinghua University(Science and Technology), 2025, 65(5): 992-999.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2024.21.030  或          http://jst.tsinghuajournals.com/CN/Y2025/V65/I5/992
[1] SUNDELL J, LEVIN H, NAZAROFF W W, et al. Ventilation rates and health:Multidisciplinary review of the scientific literature[J]. Indoor Air, 2011, 21(3):191-204.
[2] NAZAROFF W W. Residential air-change rates:A critical review[J]. Indoor Air, 2021, 31(2):282-313.
[3] BREEN M S, BURKE J M, BATTERMAN S A, et al. Modeling spatial and temporal variability of residential air exchange rates for the near-road exposures and effects of urban air pollutants study (NEXUS)[J]. International Journal of Environmental Research and Public Health, 2014, 11(11):11481-11504.
[4] HOU J, SUN Y X, CHEN Q Y, et al. Air change rates in urban Chinese bedrooms[J]. Indoor Air, 2019, 29(5):828-839.
[5] 简毅文,孙荣,刘书伟,等.居住建筑通风换气状况的动态特性研究[J].建筑科学, 2021, 37(12):44-49, 55. JIAN Y W, SUN R, LIU S W, et al. Study on the dynamic variation of natural ventilation rates in residential buildings[J]. Building Science, 2021, 37(12):44-49, 55.(in Chinese)
[6] DUARTE R, GOMES M G, RODRIGUES A M. Estimating ventilation rates in a window-aired room using Kalman filtering and considering uncertain measurements of occupancy and CO2 concentration[J]. Building and Environment, 2018, 143:691-700.
[7] REMION G, MOUJALLED B, EL MANKIBI M. Review of tracer gas-based methods for the characterization of natural ventilation performance:Comparative analysis of their accuracy[J]. Building and Environment, 2019, 160:106180.
[8] DU L L, BATTERMAN S, GODWIN C, et al. Air change rates and interzonal flows in residences, and the need for multi-zone models for exposure and health analyses[J]. International Journal of Environmental Research and Public Health, 2012, 9(12):4639-4661.
[9] SHINOHARA N, KATAOKA T, TAKAMINE K, et al. Distribution and variability of the 24-h average air exchange rates and interzonal flow rates in 26 Japanese residences in 5 seasons[J]. Atmospheric Environment, 2011, 45(21):3548-3552.
[10] PERSILY A K. Evaluating building IAQ and ventilation with indoor carbon dioxide[J]. ASHRAE Transactions, 1997, 103(2):193-204.
[11] 国家市场监督管理总局,国家标准化管理委员会.室内空气质量标准:GB/T 18883-2022[S].北京:中国标准出版社, 2022. State Administration for Market Regulation of the People's Republic of China, Standardization Administration of the People's Republic of China. Standards for indoor air quality:GB/T 18883-2022[S]. Beijing:Standards Press of China, 2022.(in Chinese)
[1] 吴翔飞, 牛建龙, 王静舞, 赵小龙, 唐飞. 城市埋地燃气管道泄漏风险演化模型构建与动态评估[J]. 清华大学学报(自然科学版), 2025, 65(3): 521-531.
[2] 熊谦, 张建同, 刘亮, 刘铁军, 唐文哲. 业主视角下大型基础设施项目群建设管理[J]. 清华大学学报(自然科学版), 2025, 65(1): 80-91.
[3] 董泽委. 陆战场低空多域场景下的集群目标威胁动态评估[J]. 清华大学学报(自然科学版), 2024, 64(8): 1380-1390.
[4] 刘心男, 宋来昊, 纪颖波. 城镇住宅家庭用能画像构建——以京津冀地区为例[J]. 清华大学学报(自然科学版), 2024, 64(8): 1482-1491.
[5] 胥明凯, 朱坤双, 李元良, 杨啸帅, 秦挺鑫, 王皖. 电力作业多源要素风险的自适应识别模型[J]. 清华大学学报(自然科学版), 2024, 64(6): 1047-1059.
[6] 张秀艳, 王琪. 飞机离地姿态与飞行操作“因果-时序”耦合动态Bayes网络模型[J]. 清华大学学报(自然科学版), 2024, 64(6): 1070-1081.
[7] 吴珊, 吴雨晨, 侯本伟, 韩宏泉. 基于Kalman滤波的供水管网水力模型用水量动态估计[J]. 清华大学学报(自然科学版), 2024, 64(2): 271-281.
[8] 杨芳, 胡豫英, 宋利祥, 赵建世. 基于动态网格和局部时间步长技术的城市洪涝模型加速方法[J]. 清华大学学报(自然科学版), 2024, 64(12): 2132-2143.
[9] 周静, 鲍长春, 段海威. 基于Kalman滤波与频率聚焦的单声源到达方向实时估计与跟踪方法[J]. 清华大学学报(自然科学版), 2024, 64(11): 1902-1910.
[10] 刘康, 刘昭伟, 陈永灿, 马芳平, 王皓冉, 黄会宝, 谢辉. 引水隧洞结构安全风险评价的动态Bayes网络模型[J]. 清华大学学报(自然科学版), 2023, 63(7): 1041-1049.
[11] 王洪苹, 胡燕祝, 庄育锋, 王松. 电气化交通路网的脆弱性分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1584-1597.
[12] 刘依明, 刘念雄, 许沛琪. 寒冷地区住宅建材生产阶段碳排放预测模型[J]. 清华大学学报(自然科学版), 2023, 63(1): 15-23.
[13] 张文, 丁雨林, 陈咏华, 孙振国. 基于外部视觉与机载IMU组合的爬壁机器人自主定位方法[J]. 清华大学学报(自然科学版), 2022, 62(9): 1524-1531.
[14] 杨扬, 张天雨, 朱宇婷, 姚恩建. 考虑建设时序和动态需求的城际公路充电设施优化布局[J]. 清华大学学报(自然科学版), 2022, 62(7): 1163-1177,1219.
[15] 刘威, 谢小荣, 姜齐荣, 毛航银. 变流式新能源机组的次/超同步振荡、小扰动同步稳定性与阻抗模型分析[J]. 清华大学学报(自然科学版), 2022, 62(10): 1706-1714.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn