Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2014, Vol. 54 Issue (2): 191-196    
  论文 本期目录 | 过刊浏览 | 高级检索 |
旋挖钻机钻杆键条焊接接头的残余应力
赵海燕1(),徐兴全1,于兴哲2,朱小武3
2. 北京市三一重机有限公司, 北京 102206
3. 北京伊萨科技发展有限公司(ESI中国), 北京 100080
Residual welding stresses in the pipe-bar joints of a rotary drilling rig
Haiyan ZHAO1(),Xingquan XU1,Xingzhe YU2,Xiaowu ZHU3
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
2. Beijing Sany Heavy Machinery Co., Ltd, Beijing 102206, China
3. ESI-Group (Beijing) Co., Ltd, Beijing 100080, China
全文: PDF(2141 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

钻杆是旋挖钻机的关键部件之一,也是易损部件,其损坏部位大多位于钻杆键条焊接接头处。该文采用SYSWELD软件对旋挖钻机钻杆键条接头的焊接过程进行了数值计算,并用X射线衍射法对实际钻杆键条焊接接头试样的残余应力进行了测量,得到了接头焊接完成后的残余应力分布。针对钻杆结构受力特点,着重分析了切向焊接残余应力的分布特征,并计算对比了焊接速度的影响。结果表明: 焊接接头最大残余拉应力出现在热影响区内;随焊接速度的增加,管体上切向最大压应力明显增大,最大拉应力变化不明显。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵海燕
徐兴全
于兴哲
朱小武
关键词 残余应力旋挖钻机钻杆键条接头有限元模拟    
Abstract

The drill rod is one of the most important components of a rotary drilling rig and it is highly stressed. The pipe-bar welded joints are most likely to be damaged. The welding of pipe-bar joints is simulated using the SYSWELD software to calculate the residual welding stresses for comparison with measured residual welding stresses by X-ray diffraction. The calculated results are in good agreement with the measured data. The welding speed is then changed to study its effect on the residual welding stresses. The results show that the maximum tensile stress exists at the heat affected zone. With the increase of welding speed, the maximum tangential compressive stress increases, but the maximum tensile stress has no significant change.

Key wordsresidual stress    rotary drilling rig    pipe-bar joint    finite element simulation
收稿日期: 2013-03-16      出版日期: 2014-02-15
ZTFLH:     
基金资助: 
引用本文:   
赵海燕, 徐兴全, 于兴哲, 朱小武. 旋挖钻机钻杆键条焊接接头的残余应力[J]. 清华大学学报(自然科学版), 2014, 54(2): 191-196.
Haiyan ZHAO, Xingquan XU, Xingzhe YU, Xiaowu ZHU. Residual welding stresses in the pipe-bar joints of a rotary drilling rig. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 191-196.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2014/V54/I2/191
  旋挖钻机钻杆结构示意图
  钻杆键条焊接接头焊缝分布
C Cr Mn Si S P
键条 0.14~0.19 0.80~1.10 1.00~1.30 ≤0.40 ≤0.035 ≤0.035
焊丝 0.085 0.41 1.54 0.11
管材 ≤0.20 ≤1.60 ≤0.55 ≤0.035 ≤0.035
  选取材料各化学成分的质量分数%
  键条材料的主要性能
  焊丝材料的主要性能
  管体材料的主要性能
  钻杆实物照片
  钻杆键条接头3维几何模型
  钻杆平面应变模型
  键条坡口示意图
  熔池形状的计算结果与实验结果的对比
  坐标系方向(残余应力)定义
  钻杆横截面焊接残余应力分布
  试样测量点
  轴向残余应力计算值与测量值对比
  不同焊接速度下的切向残余应力分布曲线
[1] 刘文忠, 管佩先, 孙宽良. 旋挖钻机入岩能力简述[J]. 建设机械技术与管理, 2010(4): 69-72. LIU Wenzhong, GUAN Peixian, SUN Kuanliang. Discussion on the drilling rock capacity of rotary drilling rig[J]. Construction Machinery Technology & Management, 2010(4): 69-72. (in Chinese)
[2] 康辉梅, 何清华, 朱建新. 旋挖钻机变幅机构的动力学建模与仿真[J]. 中南大学学报: 自然科学版, 2010, 41(2): 532-538. KANG Huimei, HE Qinghua, ZHU Jianxin. Dynamic modeling and simulation of mast link frame system of rotary drilling rig[J]. Journal of Central South University: Science and Technology, 2010, 41(2): 532-538. (in Chinese)
[3] 王振. 旋挖钻机在桥梁桩基础施工中的应用[J]. 科技传播, 2011(8): 173. WANG Zhen. Application of rotary drilling rig in bridge pile foundation construction[J]. Science and Technology Communication, 2011(8): 173. (in Chinese)
[4] 刘晓敏. ZY-200型旋挖钻机钻挖系统动力学分析 [D]. 长春: 吉林大学, 2007. LIU Xiaomin. The Dynamic Analysis on Drilling System of ZY-200 Type Rotary Drilling Rig [D]. Changchun: Jilin University, 2007. (in Chinese)
[5] 秦四成, 刘晓敏, 王雪莲, 等. NR22型旋挖钻机钻挖系统动力学分析[J]. 桥隧机械&施工技术, 2007(8): 70-72. QIN Sicheng, LIU Xiaomin, WANG Xuelian, et al. Dynamic analysis on drilling system of NR22 type rotary drilling rig[J]. Bridge and Tunnel Machinery & Construction Technology, 2007(8): 70-72. (in Chinese)
[6] 方洪渊. 焊接结构学 [M]. 北京: 机械工业出版社, 2008. FANG Hongyuan. Mechanics of Welding Structure [M]. Beijing: Machinery Industry Press, 2008. (in Chinese)
[7] Ueda Y, Yamakawa T. Analysis of thermal elastic-plastic stress and strain during welding by finite element method[J]. Trans of Japan Welding Society, 1971(2): 90-100.
[8] 陈楚. 数值分析在焊接中的应用 [M]. 上海: 上海交通大学出版社, 1985. CHEN Chu. Applications of Numerical Analysis in Welding [M]. Shanghai: Shanghai Jiao Tong University Press, 1985. (in Chinese)
[9] 鹿安理, 史清宇, 赵海燕, 等. 厚板焊接过程温度场、 应力场的三维有限元数值模拟[J]. 中国机械工程, 2001, 12(2): 183-186. LU Anli, SHI Qingyu, ZHAO Haiyan, et al.Three dimensional numerical simulation of temperature and stress distribution in welding of thick plate[J]. China Mechanical Engineering, 2001, 12(2): 183-186. (in Chinese)
[10] 汪建华. 焊接数值模拟技术及其应用 [M]. 上海: 上海交通大学出版社, 2003. WANG Jianhua. Welding Numerical Simulation Technology and Its Application [M]. Shanghai: Shanghai Jiao Tong University Press, 2003. (in Chinese)
[11] 上田幸雄, 村川英一, 麻宁绪. 焊接变形和残余应力的数值计算方法与程序 [M]. 罗宇,王江超,译. 成都: 四川大学出版社, 2008. Ueda Y, Murakawa H, MA Ningxu. Welding Deformation and Residual Stress of Numerical Methods and Procedures [M]. LUO Yu, WANG Jiangchao, trans. Chengdu: Sichuan University Press, 2008. (in Chinese)
[12] LI Chaowen, WANG Yong, ZHAN Huanxiao, et al.Three-dimensional finite element analysis of temperatures and stresses in wide-band laser surface melting processing[J]. Materials and Design, 2010(31): 3366-3373.
[13] Khurram A, Shehzad K. FE simulation of welding distortion and residual stresses in butt joint using inherent strain[J]. International Journal of Applied Physics and Mathematics, 2012(2): 405-408.
[14] Mikami Y, Sogabe K, Hashimoto T, et al.Evaluation of residual stress distribution in Ni base alloy clad welds by numerical simulation and X-ray stress measurement[J]. Science and Technology of Welding and Joining, 2013(2): 114-119.
[15] Goldak J, Chakravarti A, Bibby M. A new finite element model for welding heat sources[J]. Metallurgical Transactions, 1984, 15B(2): 299-305.
[16] 黄韬, 张铁虎. 喷丸残余应力及工艺参数优化[J]. 科学技术与工程, 2010, 10(21): 5145-5150. HUANG Tao, ZHANG Tiehu. Residual stress induced by shot peening and processing parameters optimization[J]. Science Technology and Engineering, 2010, 10(21): 5145-5150. (in Chinese)
[17] 关桥. 钛合金薄壁焊接构件的残余应力、 变形和强度 [D]. 莫斯科: 莫斯科包曼高等工学院, 1963. GUAN Qiao. The Residual Stress, Deformation and Strength of Titanium Thin Plate Welded Components [D]. Moscow: Moscow Bauman Higher Institute of Technology, 1963. (in Chinese)
[1] 张红卫, 桂良进, 范子杰. 驱动桥桥壳焊接残余应力仿真及试验验证[J]. 清华大学学报(自然科学版), 2022, 62(1): 116-124.
[2] 鲁立, 胡梦佳, 蔡志鹏, 李克俭, 吴瑶, 潘际銮. 核级管端法兰面在线堆焊修复的残余应力[J]. 清华大学学报(自然科学版), 2020, 60(1): 89-94.
[3] 李艳军, 吴爱萍, 刘德博, 赵海燕, 赵玥, 王国庆. 2219铝合金VPTIG焊接残余应力的数值分析[J]. 清华大学学报(自然科学版), 2016, 56(10): 1037-1041,1046.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn