Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2014, Vol. 54 Issue (2): 264-269    
  论文 本期目录 | 过刊浏览 | 高级检索 |
基于暖体假人的热环境下人体安全评价
张超1,2,秦挺鑫2,吴甦1(),王金玉2
2. 中国标准化研究院, 北京 100088
Human safety estimates in hot environments based on a thermal manikin
Chao ZHAN1,2,Tingxin QIN2,Su WU1(),Jinyu WANG2
1. Department of Industrial Engineering, Tsinghua University, Beijing 100084, China
2. China National Institute of Standardization, Beijing 100088, China
全文: PDF(1457 KB)   HTML
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 

工业生产中的高温作业以及应急救援中的消防灭火等,对高温环境中的人体安全防护研究提出了需求。该文建立了将热生理反应理论计算与人体模拟实验相结合的高温环境人体安全评价方法。应用高温实验舱和红外热辐射板建立高温实验环境,应用理论模型实时计算出与热环境相对应的所需出汗率和体温的变化,应用NEWTON暖体假人模拟人体被动升温、显性出汗的交互过程。在热辐射温度为30~40 ℃的热环境中,研究人体体温、出汗率的变化,并从体温过高、出汗脱水两个角度判断人体所处的安全状态。结果表明,该方法能够模拟人体在高温环境下的热生理响应,并对人体安全情况作出评价。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张超
秦挺鑫
吴甦
王金玉
关键词 暖体假人热生理模型实验模拟安全评价    
Abstract

Human safety protection in hot environments is required in many fields, such as high-temperature industrial operations and fire fighting. This paper presents a method to estimate human safety in hot environments. The method combines the bio-heat theoretical model and experimental simulations. The hot experimental environment uses a high-temperature cabin heated by an infrared thermal radiation board. The body temperature and required perspiration rate are calculated by the theoretical model for the real-time experimental parameters. The balance between the warming and the sensible heat released by perspiration is simulated using a NEWTON thermal manikin. The bio-heat response of the body temperature and the perspiration rate due to the heating is studied for 30-40 oC thermal environments. The human safety is estimated for both hyperthermia and dehydration. The results show that this method can accurately simulate the human thermal physiological response and estimate the human safety status in hot environments.

Key wordsthermal manikin    bio-heat model    experimental simulation    safety estimation
收稿日期: 2013-06-24      出版日期: 2014-02-15
ZTFLH:     
基金资助: 
引用本文:   
张超, 秦挺鑫, 吴甦, 王金玉. 基于暖体假人的热环境下人体安全评价[J]. 清华大学学报(自然科学版), 2014, 54(2): 264-269.
Chao ZHAN, Tingxin QIN, Su WU, Jinyu WANG. Human safety estimates in hot environments based on a thermal manikin. Journal of Tsinghua University(Science and Technology), 2014, 54(2): 264-269.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2014/V54/I2/264
  热环境下人体安全实验平台结构及逻辑关系
  NEWTON暖体假人的整体结构和功能关系
  高温环境下人体安全研究实验流程
  不同热辐射温度时直肠温度tre的变化
热辐射
温度/℃
生理上限
时间/min
安全上限
时间/min
耐受上限
时间/min
30
32
34
36 69 83 95
38 64 74 83
40 60 71 81
  不同热辐射温度下由Tre判断的人体危险时间
  不同热辐射温度时出汗率s的变化
热辐射温度/ ℃ 危险时间/min
30 47
32 39
34 36
36 33
38 35
40 33
  不同热辐射温度下由s判断的的危险时间
热辐射温度/ ℃ 危险时间/min 热危害时间/min
30 127 662
32 95 606
34 52 521
  由Σs判断的不同热辐射温度下的危险时间
[1] Fiala D, Lomas K J, Stohrer M. Computer prediction of human thermoregulatory and temperature response to a wide range of environmental conditions[J]. International Journal of Biometeorology, 2001, 45(3): 143-159.
[2] Stolwijk J A J. A Matheatical Model of Physiological Temperature Regulation in Man [R].NASA CR-1855, 1971.
[3] Huizenga C Zhang H, Arens E. A model of human physiology and comfort for assessing complex thermal environments[J]. Building and Environment, 2001, 36(6): 691-699.
[4] Tanabe S I, Kobayashi K, Nakano J. Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD)[J].Energy and Buildings, 2002, 34(6): 637-646.
[5] 韩雪峰,翁文国,付明. 高温环境中发汗暖体假人的热生理数值模型[J]. 清华大学学报: 自然科学版, 2012, 52(4): 536-539. HAN Xuefeng, WENG Wenguo, FU Ming. Numerical thermal model of a sweating thermal manikin in a high temperature environment[J]. Jouranl of Tsinghua University: Sci & Tech, 2012, 52(4): 536-539. (in Chinese)
[6] Psikuta A, Richards M, Fiala D. Single-sector thermo physiological human simulator[J]. Physiological Measurement, 2008, 29(2): 181-192.
[7] Holmer I. Thermal manikin history and application[J]. Journal of Applied Physiology, 2004, 92: 614-618.
[8] Coca A, Williams W J, Roberge R J. Effects of fire fighter protective ensembles on mobility and performance[J]. Applied Ergonomics, 2010, 41: 636-641.
[9] 谌玉红, 姜志华, 倪济云, 等. 出汗假人及其应用[J]. 天津工业大学学报, 2004, 23(5): 102-104. SHEN Yuhong, JIANG Zhihua, Ni Jiyun, et al.Sweating manikin and its application[J]. Journal of Tianjin Polytechnic University, 2004, 23(5): 102-104. (in Chinese)
[10] Zhu F L, Ma S, Zhang W Y. Study of skin model and geometry effects on thermal performance of thermal protective fabrics[J]. Heat Mass Transfer, 2008, 45: 99-105 .
[11] ISO 7933. Ergonomics of the Thermal Environment: Analytical Determination and Interpretation of Heat Stress Using Calculation of the Predicted Heat Strain[S]. Geneva, Switzerland: International Organization for Standardization, 2004 .
[12] 涂岱昕. 高温定向强热辐射环境下人体生理表现参数的实验与评价研究 [D]. 天津: 天津大学, 2010. TU Daixin. Experiment and Research on the Human Physiological Parameters in Hot Environment with Strong Radiant Heat of Fixed Direction [D]. Tianjin: Tianjin University, 2010. (in Chinese)
[13] 吕石磊. 极端热环境下人体热耐受力研究 [D]. 天津: 天津大学, 2007. Lu Shilei. Research on Human Heat Tolerance under Extreme Heat Environment [D]. Tianjin: Tianjin University, 2007. (in Chinese)
[14] Sawka M N, Pandolf K B. Effects of Body Water Loss on Physiological Function and Exercise Performance [M]. Gisolfi C, Lamb D, eds. Fluid Homeostasis during Exercise. Traverse City, MI, USA: Benchmark Press, 1990: 1-38.
[1] 付明, 翁文国, 韩雪峰. 高温下防护服热阻和湿阻的暖体假人实验[J]. 清华大学学报(自然科学版), 2017, 57(3): 281-285,292.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn