Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2015, Vol. 55 Issue (1): 21-26    
  本期目录 | 过刊浏览 | 高级检索 |
基于实际通水监测的大体积混凝土数字温度监测
左正1,胡昱1(),李庆斌1,李炳锋2,3,黄涛1
2. 中国长江三峡集团公司, 北京 100038
3. 深圳蓄能发电有限公司, 深圳 518115
Temperature monitoring during concrete setting through cooling pipe monitors
Zheng ZUO1,Yu HU1(),Qingbin LI1,Bingfeng LI2,3,Tao HUANG1
1. State Key Laboratory of Hydroscience and Engineering,Tsinghua University, Beijing 100084, China
2. China Three Gorges Corporation, Beijing 100038, China
3. Shenzhen Pumped Storage Power Co. Ltd,Shenzhen 518115, China
全文: PDF(2241 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

大体积混凝土施工期的温度状态是重要的评价指标,对其的获知传统上依赖于埋设内部温度计,但存在耗费资源、施工干扰、仪器失效等问题。该文提出一种数字监测方法,通过布置一定的通水仪器,利用能量守恒定律计算混凝土的温度状态,规避了传统算法中对参数选取的复杂性。对相关的计算原理进行了推导,并给出了仪器布置及监测的方法。在溪洛渡拱坝工程中分别针对单仓及全坝段进行了数字监测试验,数字监测结果与原型监测结果一致,验证了所提方法的可行性与正确性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 水工结构数字监测温度场冷却通水    
Abstract

Temperature is an important indicator to evaluate the concrete after it has been build. Traditionally, the concrete temperature is monitored by embedded sensors, but placing these is not convenient during pouring and the sensors can fail. A calculational method that does not need embedded sensors was developed where the concrete temperature field is determined from measured cooling flow temperatures. The mathematical model, instrument layout and monitoring procedure are described in this paper. Predicted temperatures for a domestic large arch dam project compare well with actual measurements to validate the applicability of the method.

Key wordshydraulic structures    numerical monitoring    temperature field    pipe cooling
收稿日期: 2013-06-03      出版日期: 2015-01-20
基金资助:国家 “九七三” 重点基础研究项目 (2013CB035902);国家自然科学基金资助项目 (51279087);清华大学水沙科学与水利水电工程国家重点实验室科研课题资助项目(2012-KY-4)
引用本文:   
左正,胡昱,李庆斌,李炳锋,黄涛. 基于实际通水监测的大体积混凝土数字温度监测[J]. 清华大学学报(自然科学版), 2015, 55(1): 21-26.
Zheng ZUO,Yu HU,Qingbin LI,Bingfeng LI,Tao HUANG. Temperature monitoring during concrete setting through cooling pipe monitors. Journal of Tsinghua University(Science and Technology), 2015, 55(1): 21-26.
链接本文:  
http://jst.tsinghuajournals.com/CN/  或          http://jst.tsinghuajournals.com/CN/Y2015/V55/I1/21
  水管布置及测温
  数字监测系统流程图
  实际工程中的水表与水龙头
材料参数 取值
比热容cc/(kJ·kg-1·℃-1) 0.985
密度ρc/(kg·m-3) 2 663.0
导热系数λ/(kJ·m-1·h-1·℃-1) 7.70
散热系数β/(kJ·m-2·h-1·℃-1) 41.8
  材料参数
  冷却通水吸收热量速率
  数字监测与原型监测对比
  大坝数字监测温度与原型监测对比
工 况 时间/s
单仓200d 36.38
单坝段225d 552.16
全坝段600d 10 226.00
全坝段1 560d 31 783.52
  数字温度监测CPU时间
[1] United States Department of the Interior Bureau of Reclamation. Cooling of Concrete Dams: Final Reports.[M]. Washington DC, USA: United States Department of the Interior, 1949.
[2] 朱伯芳. 考虑水管冷却效果的混凝土等效热传导方程[J]. 水利学报, 1991, 22(003): 28-34. ZHU Bofang. Equivalent equation of heat conduction in mass concrete considering the effect of pipe cooling[J]. Journal of Hydraulic Engineering , 1991, 22(003): 28-34. (in Chinese)
[3] 朱伯芳. 大体积混凝土温度应力与温度控制 [M]. 北京: 中国电力出版社, 1999 ZHU Bofang. Thermal Stresses and Temperature Control of Mass Concrete [M]. Beijing: China Electric Power Press, 1999. (in Chinese)
[4] 董福品. 考虑表面散热对冷却效果影响的混凝土结构水管冷却等效分析[J]. 水利水电技术, 2001, 32(6): 16-19. DONG Fupin. The method of equal effects of concrete cooling water pipe under the influence upon cooling effect of surface heat releasing[J]. Water Resources and Hydropower Engineering, 2001, 32(6): 16-19. (in Chinese).
[5] YANG Jian, HU Yu, ZUO Zheng, et al.Thermal analysis of mass concrete embedded with double-layer staggered heterogeneous cooling water pipes[J]. Applied Thermal Engineering , 2012, 35 : 145-156.
[6] 黄耀英, 郑宏, 夏开文,等. 基于等效时间的混凝土水管冷却等效热传导[J]. 华中科技大学学报: 自然科学版, 2012, 40(2): 45-48. HUANG Yaoying, ZHENG Hong, XIA Kaiwen, et al.Study on equivalent heat conduct of concrete using pipe cooling and equivalent time[J]. Journal of Huazhong University of Science and Technology: Nature Science , 2012, 40(2): 45-48. (in Chinese)
[7] 左正, 胡昱, 段云岭,等. 考虑双层异质水管的大体积混凝土施工期温度场仿真[J]. 清华大学学报: 自然科学版, 2012, 52(2): 186-189. ZUO Zheng, HU Yu, DUAN Yunling, et al.Simulation of the temperature field in mass concrete with double layers of cooling pipes during construction[J]. Journal of Tsinghua University: Science and Technology , 2012, 52(2): 186-189. (in Chinese)
[8] DL/T 5148-2001. 水工建筑物水泥灌浆施工技术规范[S]. 北京:中华人民共和国国家经济贸易委员会, 2001. DL/T 5148-2001. Construction Technology of Cement Grouting of Hydraulic Structure Specification[S]. Beijing: State Economic and Trade Commission of China, 2001. (in Chinese)
[9] Gilliland J A, Dilger W H. Monitoring concrete temperature during construction of the Confederation Bridge[J]. Canadian Journal of Civil Engineering , 1997, 24(6): 941-950.
[10] Shaw J J. A Case Study of Mass Concrete Construction for Midwest Boarder Bridges [D]. Ames, USA: Iowa State University, 2012.
[11] 朱伯芳. 混凝土坝的数字监控[J]. 水利水电技术, 2008, 39(2): 15-18. ZHU Bofang. Numerical monitoring of concrete dams[J]. Water Resources And Hydropower Engineering , 2008, 39(2): 15-18. (in Chinese)
[12] Cengel Y A. Heat and mass transfer: A practical approach 3rd ed.[M]. Boston, USA: McGraw-Hill, 2007
[13] WU Yong, Ronaldo L. Numerical implementation of temperature and creep in mass concrete[J]. Finite Elements in Analysis and Design , 2001, 37(2): 97-106.
[14] 刘光廷, 胡昱, 王恩志,等. 石门子碾压混凝土拱坝温度场实测与仿真计算[J]. 清华大学学报: 自然科学版, 2002, 42(4): 539-542. LIU Guangting, HU Yu, WANG Enzhi, et al. Analysis and measurement of the temperature field in the Shimenzi RCC arch dam[J]. Journal of Tsinghua University: Science and Technology , 2002, 42(4): 539-542. (in Chinese)
[15] ZUO Zheng, HU Yu, LI Qingbin, et al. Data mining of the thermal performance of cool-pipes in massive concrete via in-situ monitoring[J]. Mathematical Problems in Engineering , 2014, 2014(Article ID 985659): 1-15.
[16] SL 352-2006. 水工混凝土试验规程[S]. 北京:中华人民共和国水利部, 2006. SL 352-2006. Test Code for Hydraulic Concrete[S]. Beijing: Ministry of Water Resources of the People's Republic of China, 2006. (in Chinese)
[17] HU Yu, ZUO Zheng, LI Qingbin, et al.Boolean-based surface procedure for the external heat transfer analysis of dams during construction[J]. Mathematical Problems in Engineering , 2013, 2013(Article ID 175616): 1-17.
[1] 安瑞楠, 林鹏, 陈道想, 安邦, 高阳阳. 锚碇大体积混凝土智能通水温控方法与系统[J]. 清华大学学报(自然科学版), 2024, 64(4): 601-611.
[2] 安瑞楠, 林鹏, 陈道想, 安邦, 卢冠楠, 林之涛. 超大混凝土结构温度梯度监测与温度场演化[J]. 清华大学学报(自然科学版), 2023, 63(7): 1050-1059.
[3] 周华维, 赵春菊, 陈文夫, 周宜红, 谭尧升, 刘全, 潘志国, 游皓, 梁志鹏, 王放, 龚攀. 基于海量光纤测温数据的混凝土坝三维温度场分析系统[J]. 清华大学学报(自然科学版), 2021, 61(7): 738-746.
[4] 孙世妍, 张佑杰, 郑艳华, 夏冰. HTR-10超高温运行堆芯温度场分析[J]. 清华大学学报(自然科学版), 2021, 61(11): 1301-1307.
[5] 曾颖宇, 蒋晓华. 集总参数热路结合温度场和流场的电机永磁体温升分析方法[J]. 清华大学学报(自然科学版), 2018, 58(1): 67-74.
[6] 石杰, 李庆斌. 基于扩展有限元的重力坝尺寸效应[J]. 清华大学学报(自然科学版), 2017, 57(4): 345-350.
[7] 关立文, 杨亮亮, 王立平, 陈学尚, 王耀辉, 黄克. “S”形试件间歇性切削温度场建模与分析[J]. 清华大学学报(自然科学版), 2016, 56(2): 192-199.
[8] 任成, 杨星团, 李聪新, 孙艳飞, 刘志勇. 高温气冷堆球床等效导热系数实验装置模拟计算[J]. 清华大学学报(自然科学版), 2015, 55(9): 991-997.
[9] 林鹏,胡杭,郑东,李庆斌. 大体积混凝土真实温度场演化规律试验[J]. 清华大学学报(自然科学版), 2015, 55(1): 27-32.
[10] 黄首清,索双富,李永健,顾新民,王玉明. 刷式密封流场和温度场的3维数值计算[J]. 清华大学学报(自然科学版), 2014, 54(6): 805-810.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn