Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (2): 160-166    DOI: 10.16511/j.cnki.qhdxxb.2015.22.005
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于2维叉排管束模型的刷式密封介质流动计算
黄首清1,2, 索双富1, 李永健1, 杨杰1, 刘守文2, 王玉明1
1. 清华大学 摩擦学国家重点实验室, 北京 100084;
2. 北京卫星环境工程研究所 航天机电产品环境可靠性试验技术北京市重点实验室, 北京 100094
Flows in brush seals based on a 2-D staggered tube bundle model
HUANG Shouqing1,2, SUO Shuangfu1, LI Yongjian1, YANG Jie1, LIU Shouwen2, WANG Yuming1
1. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China;
2. Beijing Key Laboratory of Environment and Reliability Test Technology for Aerospace Mechanical and Electrical Products, Beijing Institute of Spacecraft Environment Engineering, Beijing 100094, China
全文: PDF(2429 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了计算刷式密封的介质流动, 建立了刷丝束截面的2维紧凑叉排管束模型, 并利用计算流体动力学(CFD)方法求解。研究了刷丝束截面泄漏流的压力和流速分布及压差、刷丝轴向排数和管距对泄漏特性的影响。结果表明: 基于周向1排与周向6排刷丝的模型所计算的压力和流速基本吻合, 各数据点的误差均小于3%, 所计算的压力梯度结果与转子表面压力测量结果基本吻合。0.2 MPa下, 最下游刷丝的压降和最高流速增量分别大约是上游刷丝的6倍和8倍。压差增加会加剧最下游刷丝间隙处的压降和流速增量。出口平均轴向流速随着压差的增大而呈线性增长, 随着刷丝轴向排数的增大而呈自然对数下降。减小刷丝管距可以在常见的压差和刷丝排数范围内显著提高密封效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄首清
索双富
李永健
杨杰
刘守文
王玉明
关键词 刷式密封泄漏叉排管束计算流体力学    
Abstract:The flows in brush seals were modeled using a two-dimensional closed staggered tube bundle model of the bristle pack cross section that was solved using computational fluid dynamics (CFD). The pressure and velocity distributions of the leakage were studied for various pressure differentials, number of axial bristle rows, and inter-tube spacing. The results show that the calculated pressures and velocities with 1 and 6 bristles in the circumferential direction are very similar with differences less than 3% for each data point and the calculated pressure gradients agree with rotor surface pressure measurements. For an inlet pressure of 0.2 MPa, the pressure drop across the last downstream bristle is about 6 times that over the upstream bristles while the maximum velocity rise is about 8 times greater. The growing pressure differential exacerbates the pressure drop and the maximum velocity rise across the last downstream bristle. The average outlet axis velocity increases linearly with the increasing pressure differentials and deceases logarithmically with the number of axial bristle rows. The sealing effect can be significantly enhanced by reducing the inter-tube spacing of the bristles for normal pressure differentials and number of axial bristle rows.
Key wordsbrush seal    leakage    staggered tube bundle    computational fluid dynamics (CFD)
收稿日期: 2015-03-24      出版日期: 2016-02-15
ZTFLH:  TB42  
基金资助:国家自然科学基金资助项目(51305224)
通讯作者: 李永健, 讲师, E-mail: liyongjian@tsinghua.edu.cn     E-mail: liyongjian@tsinghua.edu.cn
作者简介: 黄首清(1986—), 男(汉), 河南, 博士研究生。
引用本文:   
黄首清, 索双富, 李永健, 杨杰, 刘守文, 王玉明. 基于2维叉排管束模型的刷式密封介质流动计算[J]. 清华大学学报(自然科学版), 2016, 56(2): 160-166.
HUANG Shouqing, SUO Shuangfu, LI Yongjian, YANG Jie, LIU Shouwen, WANG Yuming. Flows in brush seals based on a 2-D staggered tube bundle model. Journal of Tsinghua University(Science and Technology), 2016, 56(2): 160-166.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.22.005  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I2/160
  表1 边界条件
  图1 刷丝束截面的紧凑叉排管束模型
  图2 网格剖分
  图3 周向6排刷丝模型的介质流动计算结果
  图4 周向1排刷丝模型的介质流动计算结果
  图5 两种模型刷丝间隙线上的压力对比 (0.2MPa压差,轴向10刷丝,SD/d=1.1)
  图6 两种模型刷丝间隙线上的流速对比 (0.2MPa压差,轴向10排刷丝,SD/d=1.1)
  图7 转子表面的压力分布与紧凑叉排模型对比
  图8 不同压差下的各排刷丝间隙线上的压力分布 (周向1排刷丝,轴向10排刷丝,SD/d=1.1)
  图9 不同压差下各排刷丝间隙线上的流速分布
  图10 不同压差下刷丝附近的流线图
  图11 不同管距下压差对泄漏特性的影响(n=10)
  图12 不同管距下刷丝轴向排数对泄漏特性的影响(0.2MPa)
[1] Bayley F J, Long C A. A combined experimental and theoretical study of flow and pressure distributions in a brush seal [J]. ASME Journal of Engineering for Gas Turbine and Power, 1993, 115(2): 404-410.
[2] Dogu Y, Aksit M F. Brush seal temperature distribution analysis [J]. ASME Journal of Engineering for Gas Turbines and Power, 2005, 128(3): 559-609.
[3] Braun M J, Kudriavtseu V V. A numerical simulation of a brush seal section and some experimental results [J]. Transactions of the ASME, 1995, 117: 190-202.
[4] 戴伟. 刷式密封泄漏流动及接触传热的数值分析[D].上海: 上海交通大学, 2011. DAI Wei. Numerical Simulation of Leakage Flow and Contact Heat Transfer through Brush Seal [D]. Shanghai: Shanghai Jiao Tong University, 2011. (in Chinese)
[5] Chew J W, Lapworth B L, Millener P J. Mathematical modeling of brush seals [J]. International Journal of Heat and Fluid Flow, 1995, 16(6): 493-500.
[6] Dogu Y. Investigation of brush seal flow characteristics using bulk porous medium approach [J]. ASME Journal of Engineering for Gas Turbines and Power, 2005, 127(1): 136-144.
[7] 李理科, 王之栎, 宋飞, 等. 刷式密封温度场数值研究[J]. 航空动力学报, 2010, 25(5): 1018-1024.LI Like, WANG Zhili, SONG Fei, et al. Numerical investigation of temperature field in brush seals [J]. Journal of Aerospace Power, 2010, 25(5): 1018-1024. (in Chinese)
[8] HUANG Shouqing, SUO Shuangfu, LI Yongjian, et al. Theoretical and experimental investigation on tip forces and temperature distributions of the brush seal coupled aerodynamic force [J]. ASME Journal of Engineering for Gas Turbine and Power, 2014, 136(5): 052502-1-12.
[9] 黄首清, 索双富, 李永健, 等. 刷式密封流场和温度场的3维数值计算[J]. 清华大学学报: 自然科学版, 2014, 54(6): 805-810.HUANG Shouqing, SUO Shuangfu, LI Yongjian, et al. Numerical calculation on flow and temperature distributions of brush seal three-dimensional model [J]. J Tsinghua Univ: Sci and Tech, 2014, 54(6): 805-810. (in Chinese)
[10] Franceschini G, Jones T V, Gillespie D R H. Improved understanding of blow-down in filament seals [C]//ASME Turbo Expo. Berlin, Germany: ASME, 2008: 51197-1-12.
[11] Ramezanpour A, Shirvani H, Rahmani R, et al. Three dimensional numerical modelling of staggered tube bundle turbulent crossflow in duct [C]//ASME Summer Heat Transfer Conference. San Francisco, CA, USA: ASME, 2005: 72532-1-9.
[12] Layeghi M. Numerical analysis of wooden porous media effects on heat transfer from a staggered tube bundle [J]. Journal of Heat Transfer, 2008, 130(1): 014501-1-6.
[13] 潘维, 池作和, 斯东波, 等. 匀速流体横掠管束的流场数值模拟[J]. 浙江工业大学学报: 工学版, 2004, 38(8): 1043-1046.PAN Wei, CHI Zuohe, SI Dongbo, et al. Numerical simulation of uneven entry velocity distribution gas flowing across different arrayed tube bundles [J]. J Zhejiang Univ: Sci and Tech, 2004, 38(8): 1043-1046. (in Chinese)
[14] Lelli D, Chew J W, Cooper P. Combined three-dimensional fluid dynamics and mechanical modeling of brush seals [J]. ASME J Turbomachinery, 2006, 128(1): 188-195.
[15] Chew J W, Guardino C. Simulation of flow and heat transfer in the tip region of a brush seal [J]. Int J Heat Fluid Flow, 2004, 25: 649-658.
[1] 蔡鲲鹏, 臧晓蓓, 陈升山, 郭飞. 推进剂管路系统深低温垫片密封性能数值分析[J]. 清华大学学报(自然科学版), 2024, 64(3): 578-590.
[2] 李顺洋, 万力, 桂南, 杨星团, 屠基元, 姜胜耀. 基于弹塑性接触和渗流模型的静密封泄漏计算[J]. 清华大学学报(自然科学版), 2023, 63(8): 1264-1272.
[3] 高桥东, 雷福林, 张哲巅. 预测NOx排放的化学反应器网络自动生成方法[J]. 清华大学学报(自然科学版), 2023, 63(4): 612-622.
[4] 冯瑞, 刘宇, 张章, 何青松, 吴卓, 滕海山, 贾贺. 火箭整流罩半罩再入过程连续流区气动特性数值研究[J]. 清华大学学报(自然科学版), 2023, 63(3): 414-422.
[5] 曹恒超, 徐乙人, 孙楠楠, 韩承敏, 朱桂香, 李永健. 船用柴油机曲轴箱轴端密封试验研究与改进[J]. 清华大学学报(自然科学版), 2022, 62(9): 1532-1538.
[6] 杨皓元, 水凯, 王振华, 陈思怡, 尤飞, 张云. 丙烷喷射火焰中电极形状对间隙击穿特性的影响[J]. 清华大学学报(自然科学版), 2022, 62(6): 1094-1101.
[7] 巴清心, 赵明斌, 赵泽滢, 黄腾, 王建强, 李雪芳, 肖国萍. 高压氢气射流火焰的数值模拟[J]. 清华大学学报(自然科学版), 2022, 62(2): 303-311.
[8] 韩永华, 贺丁, 赵金龙, 季学伟, 吴爱枝, 周轶. 中压燃气泄漏爆炸对地下空间安全韧性影响[J]. 清华大学学报(自然科学版), 2020, 60(1): 25-31.
[9] 薛春辉, 董玉杰. 自然循环熔盐球床堆中间换热器的优化设计[J]. 清华大学学报(自然科学版), 2018, 58(5): 445-449.
[10] 王岩, 黄弘, 黄丽达, 李云涛. 土壤大气耦合的燃气泄漏扩散数值模拟[J]. 清华大学学报(自然科学版), 2017, 57(3): 274-280.
[11] 李想, 顾春伟. 轴流压气机带冠静叶和不带冠静叶的比较研究[J]. 清华大学学报(自然科学版), 2015, 55(12): 1361-1366.
[12] 黄首清,索双富,李永健,顾新民,王玉明. 刷式密封流场和温度场的3维数值计算[J]. 清华大学学报(自然科学版), 2014, 54(6): 805-810.
[13] 曹欣荣,王婕,王荣品,张先文,唐劲天. 不同边界条件对主动脉血流仿真结果的影响[J]. 清华大学学报(自然科学版), 2014, 54(6): 700-705.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn