Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2015, Vol. 55 Issue (10): 1117-1124    DOI: 10.16511/j.cnki.qhdxxb.2015.22.012
  热能工程 本期目录 | 过刊浏览 | 高级检索 |
烟气酸露点的测量和预测模型分析
向柏祥, 赵从振, 丁艳军, 马润田, 吕俊复
清华大学 热能工程系, 北京 100084
Measurement and prediction model for the acid dew point in flue gases
XIANG Baixiang, ZHAO Congzhen, DING Yanjun, MA Runtian, LV Junfu
Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1363 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 防止电站锅炉尾部金属对流受热面的腐蚀粘污和进一步提高锅炉热效率都对锅炉尾部烟气酸露点预测的准确性提出了更高要求。大量电站锅炉机组长期运行经验表明, 目前常用的酸露点模型的预测值普遍偏高。该文在前期酸露点测量方法筛选工作的基础上, 设计搭建了两种不同的烟气酸露点测量装置, 并分别对不同烟气条件下的酸露点进行测量; 结合烟气酸露点与其影响因素之间的热力学理论关联式进一步推导出酸露点的预测模型。不同酸露点预测模型的计算结果与相同烟气条件下的实验测量结果的比较表明:相比于抽气式测量的实验结果, 插入式测量装置的测量结果对烟气中水蒸气分压的变化更为敏感。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
向柏祥
赵从振
丁艳军
马润田
吕俊复
关键词 锅炉酸露点效率腐蚀    
Abstract:The acid dew point in flue gases must be accurately predicted to avoid fouling and corrosion of the heating surfaces and improve the boiler thermal efficiency. Operating experience in many power plants has shown that current models over-predict the acid dew point. Two devices are built to measure the acid dew points for different conditions. Two models are then developed to predict the acid dew point based on thermodynamic correlations between the acid dew point and key factors in the system. Then, the flue gas acid dew points predicted by the models and from previous studies are compared to the experimental data. The results show that the plug-measuring device measurements are more sensitive to variations of the water vapor in the flue gas than the extraction-measuring device measurements.
Key wordsboiler    acid dew point    efficiency    corrosion
收稿日期: 2015-05-18      出版日期: 2015-10-15
ZTFLH:  TK229  
基金资助:国家“九七三”重点基础研究项目(2012CB214900)
通讯作者: 吕俊复,教授,E-mail:lvjf@mail.tsinghua.edu.cn     E-mail: lvjf@mail.tsinghua.edu.cn
作者简介: 向柏祥(1986-),男(土家),重庆,博士研究生。
引用本文:   
向柏祥, 赵从振, 丁艳军, 马润田, 吕俊复. 烟气酸露点的测量和预测模型分析[J]. 清华大学学报(自然科学版), 2015, 55(10): 1117-1124.
XIANG Baixiang, ZHAO Congzhen, DING Yanjun, MA Runtian, LV Junfu. Measurement and prediction model for the acid dew point in flue gases. Journal of Tsinghua University(Science and Technology), 2015, 55(10): 1117-1124.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2015.22.012  或          http://jst.tsinghuajournals.com/CN/Y2015/V55/I10/1117
  图1 抽气式测量实验系统示意图
  图2 抽气式测量系统电木管表面的电极布置示意图
  图3 插入式测量实验系统示意图
  图4 插入式测量系统电木管表面的电极布置示意图
  图5 抽气式装置测量结果
  图6 插入式装置测量结果
  表1 抽气式预测模型中的系数
  表2 插入式预测模型中的系数
  图7 不同预测模型与插入式测量结果比较
  图8 不同预测模型与抽气式测量结果比较
[1] 冯俊凯, 沈幼庭, 杨瑞昌. 锅炉原理及计算[M]. 3版. 北京: 科学出版社, 2003.FENG Junkai, SHEN Youting, YANG Ruichang. Boiler Principle and Calculation [M]. 3rd Ed. Beijing: Science Press, 2003. (in Chinese)
[2] 李鹏飞, 佟会玲. 烟气酸露点计算方法比较和分析 [J]. 锅炉技术, 2009, 40(6): 5-8, 20.LI Pengfei, TONG Huiling. Comparison and anlysis on the calculation methods of acid dew point of flue gas [J]. Boiler Technology, 2009, 40 (6): 5-8, 20. (in Chinese)
[3] 蒋安众, 王罡, 石书雨, 等. 锅炉烟气酸露点温度计算公式的研究 [J]. 锅炉技术, 2009, 40(5): 11-13, 17.JIANG Anzhong, WANG Gang, SHI Shuyu, et al. Discussion on calculation formulate of boiler's acid dew-point temperature of gas [J]. Boiler Technology, 2009, 40(5): 11-13, 17. (in Chinese)
[4] Müller P. Contribution to the problem of the action of sulfuric acid on the dew point temperature of flue gases [J]. Chem Eng Technol, 1959, 31(1): 345-350.
[5] Verhoff F H, Banchero J T. Predicting dew pionts of flue gas [J]. Chem Eng Prog, 1974, 70(8): 71-72.
[6] Okkes A G, Badger B V. Get acid dew point of flue gas [J]. Hydrocarb Process, 1987, 66(7): 53-55.
[7] Haase R, Borgmann H W. Präzisionsmessungen zur ermittlung von sauertaupunkten [J]. Korrosion, 1963, 15: 47-49. (in German)
[8] Bahadori A. Estimation of combustion flue gas acid dew point during heat recovery and efficiency gain [J]. Appl Therm Eng, 2011, 31(8): 1457-1462.
[9] Weise C, Gusewell M, Heinze G, et al. Industrial investigations for the estimation of flue gas dew points [J]. VGB Power Technology, 2000, 80(8): 43-47.
[10] ZareNezhad B, Aminian A. A multi-layer feed forward neural network model for accurate prediction of flue gas sulfuric acid dew points in process industries [J]. Appl Therm Eng, 2010, 30(6): 692-696.
[11] Blanco J M, Pena F. Increase in the boiler's performance in terms of the acid dew point temperature: Environmental advantages of replacing fuels [J]. Appl Therm Eng, 2008, 28(7): 777-784.
[12] Halstead W D, Talbot J. Sulphuric acid dew point in power station flue gases [J]. J Energy Inst, 1980, 53(4): 142-145.
[13] Stuart D, Whiteside R. Continuous measurements of acid dew point and sulfur trioxide in stack gases [C]// Air and Waste Management Association's 101st Annual Conference and Exhibition. Portland, OR, USA, 2008.
[14] 石丽国, 石立红, 王长权, 等. 燃煤锅炉烟气露点温度确定方法的分析 [J]. 全面腐蚀控制, 2009, 23(4): 32-35.SHI Liguo, SHI Lihong, WANG Changquan, et al. The analysis of the measurement of flue gas dew point in coal-fired boiler [J]. Total Corrosion Control, 2009, 23(4): 32-35. (in Chinese)
[15] 陈金玉, 温敬平. 烟气露点测量方法的评价 [J]. 节能技术, 1994, 11(4): 20-22.CHEN Jinyu, WEN Jingping. The anlysis on the measurement methods of acid dew point of flue gas [J].Energy-Saving Technology, 1994, 11(4): 20-22. (in Chinese)
[16] Fleig D, Andersson K, Normann F, et al. SO3 formation under oxyfuel combustion conditions [J]. Ind Eng Chem Res, 2011, 50(14): 8505-8514.
[17] Wagner W, Kruse A. Properties of Water and Steam: The Industrial Standard IAPWS-IF97 for the Thermodynamic Properties and Supplementary Equations for Other Properties: Tables Based on These Equations [M]. 2nd Ed. Berlin: Springer-Verlag, 1998.
[1] 侯本伟, 游丹, 范世杰, 许成顺, 钟紫蓝. 基于网络效率的城市轨道交通网络抗震韧性评估[J]. 清华大学学报(自然科学版), 2024, 64(3): 509-520.
[2] 曹新颖, 郑德城, 秦培成, 李小冬. 建筑工业噪声对工人学习效率的影响——基于脑电的研究[J]. 清华大学学报(自然科学版), 2024, 64(2): 189-197.
[3] 王钦, 贺迪, 桂良进, 胡智宇, 彭金, 范子杰. 考虑系统变形的驱动桥准双曲面齿轮啮合效率计算方法[J]. 清华大学学报(自然科学版), 2024, 64(1): 33-43.
[4] 李佳龙, 陈永灿, 李永龙, 王皓冉, 谢辉. 泥沙淤积环境下清淤置换模块设计及检测效率分析[J]. 清华大学学报(自然科学版), 2023, 63(7): 1104-1112.
[5] 钟茂华, 胡鹏, 陈俊沣, 程辉航, 吴乐, 魏旋. 顶部多点竖向排烟下地铁隧道烟气控制研究[J]. 清华大学学报(自然科学版), 2023, 63(5): 754-764.
[6] 王东璞, 王子奇, 刘爽, 蒋林峰, 易磊, 孙超. 复杂边界和极端条件对单相和多相湍流结构和输运的影响[J]. 清华大学学报(自然科学版), 2022, 62(4): 758-773.
[7] 徐建江, 陈文夫, 谭尧升, 高世奎, 周天刚, 周孟夏, 刘春风, 梁程, 李向前. 特高拱坝混凝土运输智能化关键技术与应用[J]. 清华大学学报(自然科学版), 2021, 61(7): 768-776.
[8] 林鹏翥, 娄佳慧, 李建兰, 郝勇. 光谱选择透过性对聚光太阳能热化学循环性能的影响[J]. 清华大学学报(自然科学版), 2021, 61(12): 1389-1396.
[9] 王言然, 孔纲强, 沈扬, 孙智文, 王新越, 肖涵宇. 热干扰下能量桩热力特性现场试验研究[J]. 清华大学学报(自然科学版), 2020, 60(9): 733-739.
[10] 刘瞿, 陈高强, 曾申波, 张帅, 潘际銮, 史清宇. 组织细化对AZ91D镁合金腐蚀性能的影响[J]. 清华大学学报(自然科学版), 2019, 59(9): 765-771.
[11] 姚禹歌, 吕俊复, 张扬, 陈书洁, 张缦, 杨海瑞. 热电偶熔敷埋设法测量CFB锅炉壁温的实验研究[J]. 清华大学学报(自然科学版), 2019, 59(4): 326-330.
[12] 谷庆, 袁立强, 赵争鸣, 段任之, 陆子贤. 基于三重移相控制的双有源桥DC-DC变换器性能综合优化[J]. 清华大学学报(自然科学版), 2019, 59(10): 785-795.
[13] 刘振, 李清海, 朱群益, 谭中超, 张衍国. 鼓泡塔中SO2和CO2对钴氨络合物脱硝效率的影响[J]. 清华大学学报(自然科学版), 2018, 58(9): 814-820.
[14] 白召乐, 周琦, 杨楠, 刘锋, 杨中建, 陈宝维, 王建龙. 基于波长位移光纤的232Th+ZnS(Ag)闪烁体中子探测器[J]. 清华大学学报(自然科学版), 2018, 58(6): 558-562.
[15] 陈皇卿, 钟晓峰, 王京. 基于能效的单频网广播小区部署优化算法[J]. 清华大学学报(自然科学版), 2018, 58(2): 170-174.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn