Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (1): 1-6    DOI: 10.16511/j.cnki.qhdxxb.2016.23.012
  信息安全 本期目录 | 过刊浏览 | 高级检索 |
抗攻击低功耗RSA处理器设计与实现
任燕婷1,2, 乌力吉1,2, 李翔宇1,2, 王安1,2, 张向民1,2
1. 清华大学 微电子学研究所, 北京 100084;
2. 清华大学信息科学与技术国家实验室, 北京 100084
Design and implementation of a side-channel resistant and low power RSA processor
REN Yanting1,2, WU Liji1,2, LI Xiangyu1,2, WANG An1,2, ZHANG Xiangmin1,2
1. Institute of Microelectronics, Tsinghua University, Beijing 100084, China;
2. Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, China
全文: PDF(1106 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 RSA是目前应用最广的公钥算法之一, 也是金融IC卡指定的算法。近年来已有多篇文章指出无保护的RSA容易受到侧信道攻击。而且由于算法复杂, RSA运算模块往往功耗大。针对双界面金融IC低功耗、高安全性的需求, 该文设计了一种高效低功耗, 并且可抵抗常见侧信道攻击的RSA处理器。采用基于Montgomery阶梯的抗侧信道对策, 增强了RSA处理器抵抗简单功耗攻击、差分功耗攻击及常见故障攻击的能力; 通过采用结合CIOS算法和Karatsuba算法的改进Montgomery模乘算法, 使得RSA的Montgomery模乘速度提高了25%, 同时实现了低功耗; 针对智能IC卡资源受限的特点, 以32位为步长设计计算单元, 因此RSA长度可配置, 最高可达2 048位。该文采用FPGA开发板上的C*Core C0系统对提出的RSA处理器进行了功能验证。在SMIC 0.13 mm的工艺下, EDA综合结果显示: 1 024位带侧信道防护措施的RSA在30 MHz时钟下吞吐率为8.3 kb/s, 规模24 000 gates, 功耗为1.15 mW。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任燕婷
乌力吉
李翔宇
王安
张向民
关键词 RSA低功耗侧信道攻击Montgomery算法    
Abstract:RSA is the most widely used public-key algorithm, and is specified as the signature algorithm in bank IC cards. The unprotected RSA implementation is vulnerable to side-channel attacks as pointed out in several works. Due to the complexity of the algorithm, the power consumption of an RSA module is usually high. A side-channel resistant, efficient and low-power RSA processor was designed using countermeasures against side-channel attacks based on the Montgomery ladder with a modified Montgomery algorithm then proposed, which combines CIOS and Karatsuba algorithms. The computation time of modular multiplication can be reduced by 25% with the length of RSA being configurable and up to 2 048 bits. The proposed RSA module was verified with C*Core C0 in FPGA board. With SMIC 0.13 μm CMOS process, the EDA synthesis result indicates that the area is about 24 000 gates, and the throughput of 1024-bit RSA is 8.3 kb/s under the frequency of 30 MHz with the power consumption of 1.15 mW.
Key wordsRSA    low-power    side-channel attack    Montgomery algorithm
收稿日期: 2014-10-28      出版日期: 2016-01-15
ZTFLH:  TN4  
通讯作者: 乌力吉,副教授,E-mail:lijiwu@tsinghua.edu.cn     E-mail: lijiwu@tsinghua.edu.cn
引用本文:   
任燕婷, 乌力吉, 李翔宇, 王安, 张向民. 抗攻击低功耗RSA处理器设计与实现[J]. 清华大学学报(自然科学版), 2016, 56(1): 1-6.
REN Yanting, WU Liji, LI Xiangyu, WANG An, ZHANG Xiangmin. Design and implementation of a side-channel resistant and low power RSA processor. Journal of Tsinghua University(Science and Technology), 2016, 56(1): 1-6.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.23.012  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I1/1
  图1 Karatsuba 乘法图示
  表1 CIOS-Karatsuba 乘加运算步骤分解
  图2 RSA  处理器硬件架构
  图3 运算单元电路图
  图4 HSNIOS2C35 开发板及仿真器实物
  表2 性能对比1(1024位RSA)
  表3 性能对比2(1024位RSA)
[1] Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and public-key cryptosystems [J]. Cmmunications of the ACM, 1978, 21(2): 120-126.
[2] Kocher P, Jaffe J, Jun B. Differential power analysis [C]//Advances in Cryptology—CRYPTO'99. Springer Berlin Heidelberg, 1999: 388-397.
[3] Marc J, Michael T. Fault Analysis in Cryptography [M]. Springer Berlin Heidelberg, 2012.
[4] Marc J, YEN Sungming. The Montgomery powering ladder [C]//Proc CHES. Springer, 2003: 291-302.
[5] Giraud C. An RSA implementation resistant to fault attacks and to simple power analysis [J]. Computers, IEEE Transactions on, 2006, 55(9): 1116-1120.
[6] Montgomery P L. Modular multiplication without trial division [J]. Mathematics of Computation, 1985, 44(1): 519-521.
[7] Koç C K, Acar T, Kaliski B S. Analyzing and comparing Montgomery multiplication algorithms [J]. IEEE Micro, 16(3), 1996: 26-33.
[8] 孔凡玉, 于佳, 李大兴. 一种改进的Montgomery模乘快速算法[J]. 计算机工程, 2005, 31(8): 1-3.KONG Fanyu, YU Jia, LI Daxing. An improved fast Montgomery multiplication algorithm [J]. Computer Engineering, 2005, 31(8): 1-3. (in Chinese)
[9] Karatsuba A, Ofman Y. Multiplication of many-digital numbers by automatic computers [J]. Proceedings of the USSR Academy of Science, 1962, 145: 293-294.
[10] WANG Deming, DING Yanyu, ZHANG Jun, et al. Area-efficient and ultra-low-power architecture of RSA processor for RFID [J]. Electronic Letters, 2012, 48(19): 1185-1187.
[11] HUANG Wei, YOU Kaidi, ZHANG Suiyu, et al. Unified low cost crypto architecture accelerating RSA/SHA-1 for security processor [C]//ASICON'09. 2009: 151-154.
[1] 彭双和, 赵佳利, 韩静. 基于性能分析的Cache侧信道攻击循环定位[J]. 清华大学学报(自然科学版), 2020, 60(6): 449-455.
[2] 江舟, 向东, 神克乐. 基于可控功耗的扫描分段测试结构[J]. 清华大学学报(自然科学版), 2015, 55(8): 889-894.
[3] 开毅,卢建元,刘斌. 基于分组处理能力共享的低功耗路由器体系结构[J]. 清华大学学报(自然科学版), 2014, 54(4): 485-489.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn