Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (2): 130-136    DOI: 10.16511/j.cnki.qhdxxb.2016.22.003
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
动态交通环境下的纯电动车辆多目标出行规划
张书玮, 罗禹贡, 李克强
清华大学 汽车安全与节能国家重点实验室, 北京 100084
Multi-objective optimization for traveling plan of fully electric vehicles in dynamic traffic environments
ZHANG Shuwei, LUO Yugong, LI Keqiang
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
全文: PDF(1064 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为缓解电动车辆出行过程中包括里程不足、充电时间长、充电站稀少以及电池循环寿命有限等固有问题, 提高电动车辆的行驶性能以及驾驶员的接受程度, 需要为其推荐合理的出行与充电方案。然而, 目前出行方案制定方法没有考虑到交通环境复杂多变的特性, 并且仅能提供在单一目标下的出行方案, 难以为驾驶员提供综合考虑多种因素的出行策略。该文提出了一种在动态随机路网环境下的考虑多目标多约束的电动车辆出行规划策略。该出行规划策略考虑到交通环境的时变随机特性, 利用多目标蚁群优化方法计算求解最优Pareto解集, 为驾驶员推荐包括出行路径、各路径上的行驶速度、充电位置与模式、空调使用等出行要素。研究结果表明: 基于动态随机路网的出行方案相比于基于静态确定性路网的出行方案更为优秀; 相比于单一目标出行方案, 基于多目标优化的出行策略综合性能更好。仿真结果证明了该方法能够协调各优化目标与约束条件, 合理推荐电动车辆的出行方案解集, 提升电动车辆的使用性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张书玮
罗禹贡
李克强
关键词 电动车辆出行规划多目标优化蚁群优化算法    
Abstract:Reliable routing and charging plans are needed for fully electric vehicles (FEVs) to ease the intrinsic drawbacks of FEVs, such as mileage limitations, overly long charging times, limited charging stations, and limited battery lifetimes to enhance the driving performance and drivers' acceptance. However, most research has overlooked the effects of changing traffic system features and has provided travelling strategies for only a single travelling objective rather than strategies that consider multi-factors simultaneously. This paper describes a multi-objective, multi-constraint travelling plan optimization strategy for dynamic time-dependent traffic networks for FEVs. This optimization strategy includes the time-dependent stochastic changes of the traffic environment with the multi-objective ant colony optimization method used to calculate the optimal Pareto travelling plan set. The result provides drivers with information including travelling route, travelling speed on each road, charging locations and modes, and air-conditioner usage. The results show that a travelling plan within a dynamic time-dependent traffic environment is better than that within a stable deterministic traffic environment. The travelling result with multi-objective optimization is better than a single objective strategy. This multi-objective, multi-constraint optimization method provides reasonable travelling plans that enhance the driving performance of FEVs.
Key wordsfully electric vehicle    travelling plan    multi-objective optimization    ant colony optimization method
收稿日期: 2015-03-12      出版日期: 2016-02-15
ZTFLH:  U469.72  
基金资助:国家 “九七三” 重点基础研究发展计划(2013CB228202); 清华大学汽车安全与节能国家重点实验室自主课题(ZZ2014-092)
通讯作者: 李克强, 教授, E-mail: likq@tsinghua.edu.cn     E-mail: likq@tsinghua.edu.cn
作者简介: 张书玮(1988-), 男(汉), 山东, 博士研究生。
引用本文:   
张书玮, 罗禹贡, 李克强. 动态交通环境下的纯电动车辆多目标出行规划[J]. 清华大学学报(自然科学版), 2016, 56(2): 130-136.
ZHANG Shuwei, LUO Yugong, LI Keqiang. Multi-objective optimization for traveling plan of fully electric vehicles in dynamic traffic environments. Journal of Tsinghua University(Science and Technology), 2016, 56(2): 130-136.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.003  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I2/130
  图1 电动车辆出行规划方法算法结构
  图2 仿真路网结构图
  表1 路径最短目标与多目标优化方法对比结果
  表2 时间最短目标与多目标优化方法对比结果
  表3 静态路网与动态路网下多目标优化方法前锋面百分比对比结果
  表4 静态路网与动态路网下多目标优化方法Ratio对比结果
[1] GUO Qinglai, XIN Shujun, SUN Hongbin, et al. Rapid-charging navigation of electric vehicles based on real-time power systems and traffic data [J]. IEEE Transactions on Smart Grid, 2014, 5(4): 1969-1979.
[2] XIN Shujun, GUO Qinglai, SUN Hongbin, et al. A hybrid simulation method for EVs' operation considering power grid and traffic information [C]//IEEE Power and Energy Society General Meeting (PES). Vancouver, BC, 2013: 1-5.
[3] Schneider M, Stenger A, Goeke D. The electric vehicle-routing problem with time windows and recharging stations [J]. Transportation Science, 2013, 48(4): 500-520.
[4] Erogan S, Miller-Hooks E. A green vehicle routing problem [J]. Transportation Research, 2012, 48(1): 100-114.
[5] Conrad R G, Figliozzi M A. The recharging vehicle routing problem [C]//2011 Industrial Engineering Research Conference. Reno, NV, 2001.
[6] Mhar S, Remy G. EV-planning: Electric vehicle itinerary planning [C]//2013 International Conference on Smart Communications in Network Technologies (SaCoNeT). Paris, 2013: 1-5.
[7] Ombuki B, Ross B J, Hanshar F. Multi objective genetic algorithms for vehicle routing problem with time windows [J]. Applied Intelligence, 2006, 24(1): 17-30.
[8] Kobayashi Y, Kiyama N, Aoshima H, et al. A route search method for electric vehicles in consideration of range and locations of charging stations [C]//2011 IEEE Intelligent Vehicles Symposium. Baden-Baden, 2011: 920-925.
[9] Mariyasagayam M N, Kobayashi Y. Electric vehicle route assistance using forecast on charging station [C]//ENERGY 2013: The Third International Conference on Smart Grids, Green Communications and IT Energy-Aware Technologies. Lisbon: IARIA, 2013: 134-142.
[10] Sachenbacher M, Leucker M, Artmeier A, et al. Efficient energy-optimal routing for electric vehicles [C]//Proc 25th Assoc Advancement Artificial Intell Conf. San Francisco, CA, 2011: 1402-1407.
[11] 方贵银, 李辉. 汽车空调技术 [M]. 北京: 机械工业出版社, 2002.FANG Guiyin, LI Hui. Vehicle Air Conditioner Technology [M]. Beijing: China Machine Press, 2002. (in Chinese)
[12] Moura S J. Techniques for Battery Health Conscious Power Management via Electrochemical Modeling and Optimal Control [D]. Ann Arbor, MI: University of Michigan, 2011.
[13] Doerner K, Gutjahr W J. Pareto ant colony optimization: A meta heuristic approach to multiobjective portfolio selection [J]. Annals of Operations Research, 2004, 131(1-4): 79-99.
[14] 张照生. 交通约束下的行车最优路径规划 [D]. 北京: 清华大学, 2013.ZHANG Zhaosheng. Optimum Vehicular Path Planning under Traffic Restriction [D]. Beijing: Tsinghua University, 2013. (in Chinese)
[15] Siddiqi U F, Shiraishi Y, Sait S M. Multi-objective optimal path selection in electric vehicles [J]. Artif Life Robotics, 2012, 17(1): 113-122.
[16] Deb K. Multi-Objective Optimization Using Evolutionary Algorithms [M]. New York, NJ: John Wiley & Sons, 2001.
[1] 张潇月, 李玥, 王晨杨, 陈正侠, 贾海峰. 面向不同需求的未来社区海绵源头设施布局方法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1483-1492.
[2] 代鑫, 陈举师, 陈涛, 黄弘, 李志鹏, 余水平. 抽水蓄能电站应急排水多目标优化方法及算例分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1558-1565.
[3] 檀添, 陈凯楠, 林秋琼, 蒋烨, 赵争鸣. 多接收端无线电能传输系统动态特性分析及多目标参数优化[J]. 清华大学学报(自然科学版), 2021, 61(10): 1066-1078.
[4] 桂良进, 朱升发, 陈伟博, 周驰, 范子杰. 波形套的轴向受压分析与优化设计[J]. 清华大学学报(自然科学版), 2019, 59(3): 219-227.
[5] 薛春辉, 董玉杰. 自然循环熔盐球床堆中间换热器的优化设计[J]. 清华大学学报(自然科学版), 2018, 58(5): 445-449.
[6] 孙智源, 陆化普. 考虑交通大数据的交通检测器优化布置模型[J]. 清华大学学报(自然科学版), 2016, 56(7): 743-750.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn