Abstract:A coordinated control system is developed for the regenerative and hydraulic braking systems in electric vehicles based on a tire-road adhesion model to ensure the stability of electric vehicles with anti-lock braking using motor control accuracy and fast response. The system is designed for a distributed drive electric vehicle with the tire-road adhesion estimated according to the vehicle dynamics. The system measures the motor torque and the wheel cylinder braking pressure. Different coordinated control strategies are given for three tire-road adhesion levels with a coordination mechanism that stops the regenerative braking during anti-lock braking control. Simulations show that this strategy improves both the braking stability and the regenerative energy efficiency during braking. The regenerative braking control reduces the hydraulic braking pressure fluctuations and improves braking stability and comfort.
张雷, 于良耀, 宋健, 张永生, 魏文若. 电动汽车再生制动与液压制动防抱协调控制[J]. 清华大学学报(自然科学版), 2016, 56(2): 152-159.
ZHANG Lei, YU Liangyao, SONG Jian, ZHANG Yongsheng, WEI Wenruo. Coordinated anti-lock braking control of regenerative and hydraulic braking systems in electric vehicles. Journal of Tsinghua University(Science and Technology), 2016, 56(2): 152-159.
[1] HUANG Xiaoyu, WANG Junmin. Model predictive regenerative braking control for lightweight electric vehicles with in-wheel motors [J]. Journal of Automobile Engineering, 2012, 226(9): 1220-1232.
[2] Zhang J, Kong D, Chen L, et al. Optimization of control strategy for regenerative braking of an electrified bus equipped with an anti-lock braking system [J]. Journal of Automobile Engineering, 2012, 226(4): 494-506.
[3] Peng D, Zhang Y, Yin C, et al. Combined control of a regenerative braking and antilock braking system for hybrid electric vehicles [J]. International Journal of Automotive Technology, 2008, 9(6): 749-757.
[4] Rosenberger M, Uhlig R, Koch T, et al. Combining Regenerative Braking and Anti-Lock Braking for Enhanced Braking Performance and Efficiency [R]. SAE Technical Paper, 2012-01-0234, 2012.
[5] Sakai S, Hori Y. Advantage of electric motor for anti-skid control of electric vehicle [J]. EPE Journal, 2001, 11(4): 26-32.
[6] 赵国柱, 滕建辉, 魏民祥, 等. 基于模糊控制的电动汽车低速再生ABS研究 [J]. 中国机械工程, 2012, 23(1): 117-122.ZHAO Guozhu, TENG Jianhui, WEI Minxiang, et al. Study on low-speed regenerative braking of electric vehicle as ABS based on fuzzy control [J]. China Mechanical Engineering, 2012, 23(1): 117-122. (in Chinese)
[7] ZHOU Yong, LI Shengjin, FANG Zongde, et al. Control strategy for ABS of EV with independently controlled four in-wheel motors [C]//4th IEEE Conference on Industrial Electronics and Applications. Xi'an, China: IEEE Press, 2009: 2471-2476.
[8] 杨亚娟, 赵韩, 李维汉, 等. 电动汽车再生制动与液压ABS系统集成控制研究[J]. 合肥工业大学学报: 自然科学版, 2012, 35(8): 1054-1058.YANG Yajuan, ZHAO Han, LI Weihan, et al. Integrated control of regenerative braking and hydraulic anti-lock braking system of electric vehicle [J]. Journal of Hefei University of Technology: Science and Technology, 2012, 35(8): 1054-1058. (in Chinese)
[9] 周磊, 罗禹贡, 李克强, 等. 电动汽车回馈制动与防抱死制动集成控制[J]. 清华大学学报: 自然科学版, 2009, 49(5): 728-732.ZHOU Lei, LUO Yugong, LI Keqiang, et al. Braking control of electric vehicles while coordinating regenerative and anti-lock brakes [J]. Journal of Tsinghua University: Science and Technology, 2009, 49(5): 728-732. (in Chinese)
[10] ZHU Hao, YU Zhuoping, XIONG Lu, et al. An Anti-Lock Braking Control Strategy for 4WD Electric Vehicle Based on Variable Structure Control [R]. SAE Technical Paper, 2013-01-0717, 2013.
[11] Khatun P, Bingham C, Schofield N, et al. Application of fuzzy control algorithms for electric vehicle antilock braking/traction control systems [J]. IEEE Transactions on Vehicular Technology, 2003, 52(5): 1356-1364.
[12] Zhang J, Chen X, Zhang P. Integrated control of braking energy regeneration and pneumatic anti-lock braking [J]. Journal of Automobile Engineering, 2010, 224(5): 587-610.
[13] 王吉. 电动轮汽车制动集成控制策略与复合ABS控制研究[D]. 长春: 吉林大学, 2011.WANG Ji. Study on Brake Integrated Control Strategy and Composite ABS Control for Electric-Wheel Vehicle [D]. Changchun, China: Jilin University, 2011. (in Chinese)
[14] Pacejka H B, Bakker E. The magic formula tyre model [J]. Vehicle System Dynamics, 1992, 21(S1): 1-18.
[15] 李文. 基于目标优化的四轮驱动电动汽车转矩分配策略研究[D]. 成都: 电子科技大学, 2013.LI Wen. Four-Wheel Drive Electric Vehicles Torque Distribution Strategy Based on Objective Optimization [D]. Chengdu, China: University of Electronic Science and Technology of China, 2013. (in Chinese)
[16] Furukawa N, Handa K, Kawai N, et al. Regenerative Braking Control System for Electric Vehicle [P]. USA: Patent 6033041. 2000-03-07.
[17] ZHANG Jianlong, YIN Chengliang, ZHANG Jianwu. Design and analysis of electro-mechanical hybrid anti-lock braking system for hybrid electric vehicle utilizing motor regenerative braking [J]. Journal of Mechanical Engineering, 2009, 22(1): 42-49.