Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (4): 406-410,416    DOI: 10.16511/j.cnki.qhdxxb.2016.24.011
  工程物理 本期目录 | 过刊浏览 | 高级检索 |
基于有限元仿真的磁感应肿瘤治疗设备线圈优化设计
武建安1, 吴祖河1, 王亨1, 李利亚2, 唐劲天1
1. 清华大学 工程物理系, 粒子技术与辐射成像教育部重点实验室, 北京 100084;
2. 中日友好医院 中西医结合肿瘤内科, 北京 100029
Optimization of a coil design for magnetic hyperthermia treatment based on the finite element method
WU Jian'an1, WU Zuhe1, WANG Heng1, LI Liya2, TANG Jintian1
1. Key Laboratory of Particle & Radiation Imaging of the Ministry of Education, Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
2. Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, Beijing 100029, China
全文: PDF(1558 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在针对头部肿瘤的线圈式磁感应肿瘤治疗设备设计中,为了提高治疗磁场的强度与均匀度,需要对传统的圆形同轴线圈进行改进。根据临床需求和理论分析,采用D形线圈设计,并通过软件仿真与实际测量加以评估。结果表明:在相同条件下D形线圈与圆形线圈相比其中心磁场强度提高了约5.9%,有效治疗空间增加了约4.6%,设备性能有了一定的提高。线圈电感值的仿真与实际测量结果均符合设备要求。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
武建安
吴祖河
王亨
李利亚
唐劲天
关键词 肿瘤磁感应热疗有限元电磁场    
Abstract:A D-shaped coil improved the magnetic intensity and magnetic field uniformity over a circular coil for tumors in the head. The coil was designed using computer simulations and evaluated in trials with the center magnetic field intensity increased by 5.9%, and the valid treatment space increased by 4.6%. The coil also meets the design requirements.
Key wordstumor    magnetic hyperthermia    finite element method    electromagnetic field
收稿日期: 2015-06-04      出版日期: 2016-04-15
ZTFLH:  R730.59  
通讯作者: 唐劲天,研究员。E-mail:tangjt@mail.tsinghua.edu.cn     E-mail: tangjt@mail.tsinghua.edu.cn
引用本文:   
武建安, 吴祖河, 王亨, 李利亚, 唐劲天. 基于有限元仿真的磁感应肿瘤治疗设备线圈优化设计[J]. 清华大学学报(自然科学版), 2016, 56(4): 406-410,416.
WU Jian'an, WU Zuhe, WANG Heng, LI Liya, TANG Jintian. Optimization of a coil design for magnetic hyperthermia treatment based on the finite element method. Journal of Tsinghua University(Science and Technology), 2016, 56(4): 406-410,416.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.24.011  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I4/406
  图1 串联谐振电路原理图
  图2 建立D 形线圈模型与网格化结果
  表1 模型组件的电磁学属性值
  图3 不同平面上D 形线圈磁场强度分布图
  图4 不同轴线上D 形线圈与圆形线圈的磁场强度对比图
  表2 线圈电感矩阵
  图5 实际D 形线圈的设计与制造
[1] Chikazumi S. Physics of Magnetism[M]. New York, USA:John Wiley & Sons, 1964.
[2] Cherukuri P, Glazer E S, Curley S A. Targeted hyperthermia using metal nanoparticles[J].Advanced Drug Delivery Reviews, 2010, 62(3):339-345.
[3] HUANG Chifang, CHAO Hsuanyi, CHANG Hsunhao, et al. A magnetic induction heating system with multi-cascaded coils and adjustable magnetic circuit for hyperthermia[J].Electromagnetic Biology and Medicine, 2014, 1(1):1-6.
[4] GAO Yu, LIU Yi, XU Chenjie. Magnetic Nanoparticles for Biomedical Applications:From Diagnosis to Treatment to Regeneration[M]. London, UK:Springer, 2014.
[5] Haider S A, Cetas T C, Wait J R, et al. Power absorption in ferromagnetic implants from radiofrequency magnetic fields and the problem of optimization[J].IEEE Transactions on Microwave Theory and Techniques, 1991, 39(11):1817-1827.
[6] Lucia O, Maussion P, Dede E J, et al. Induction heating technology and its applications:Past developments, current technology, and future challenges[J].IEEE Transactions on Industrial Electronics, 2014, 61(5):2509-2520.
[7] 卓子寒, 翟伟明, 蔡东阳, 等. 肿瘤磁感应治疗计划系统适形热疗方法[J]. 清华大学学报:自然科学版, 2014, 54(6):706-710.ZHUO Zihan, ZHAI Weiming, CAI Dongyang, et al. Conformal treatment method for tumor magnetic induction hyperthermia treatment planning system[J].Journal of Tsinghua University:Science and Technology, 2014, 54(6):706-710. (in Chinese)
[8] Stigliano R V, Shubitidze F, Petryk A A, et al. Magnetic nanoparticle hyperthermia:predictive model for temperature distribution[C]//Proceedings of the SPIE BiOS. Bellingham, USA:International Society for Optics and Photonics, 2013:858410-858418.
[9] ZHUO Zihan, WANG Jie, ZHAI Weiming, et al. Numerical modeling and simulation of temperature distribution uncertainty subject to ferromagnetic thermoseeds hyperthermia[J].Chinese Science Bulletin, 2014, 59(12):1317-1325.
[10] 曹欣荣, 蔡东阳, 张晓冬, 等. 基于有限元仿真的肿瘤磁感应治疗设备磁芯仿真与优化[C]//2010两岸四地生物医学工程学术年会论文集. 北京:中国仪器仪表学会医疗仪器分会, 2010:85-90.CAO Xinrong, CAI Dongyang, ZHANG Xiaodong, et al. Simulation and optimization of magnetic core of magnetic induction hyperthermia device based on finite element method[C]//2010 Biomedical Engineering of Four Places Annual Conference Proceedings. Beijing:China Instrument and Control Society, Medical Instrument Branch, 2010:85-90.(in Chinese)
[11] 陈万青, 郑荣寿, 曾红梅, 等. 2011年中国恶性肿瘤发病和死亡分析[J]. 中国肿瘤, 2015, 24(1):1-10.CHEN Wanqing, ZHENG Rongshou, ZENG Hongmei, et al. Report of cancer incidence and mortality in China 2011[J].China Cancer, 2015, 24(1):1-10. (in Chinese)
[12] Omuro A, Deangelis L M. Glioblastoma and other malignant gliomas:A clinical review[J]. Journal of the American Medical Association, 2013, 310(17):1842-1850.
[13] Lee T W. Fighting fire with fire:The revival of thermotherapy for gliomas[J].Anticancer Research, 2014, 34(2):565-574.
[14] YI Guoqing, GU Bin, CHEN Lukui. The safety and efficacy of magnetic nano-iron hyperthermia therapy on rat brain glioma[J].Tumor Biology, 2014, 35(3):2445-2449.
[15] Cano M E, Barrera A, Estrada J C, et al. An induction heater device for studies of magnetic hyperthermia and specific absorption ratio measurements[J].Review of Scientific Instruments, 2011, 82(11):114904-114910.
[16] Tooley M. Electronic Circuits-Fundamentals & Applications[M]. London, UK:Routledge, 2007.
[17] Ramo S, Whinnery J R. Fields and waves in communication electronics[M]. New York, USA:John Wiley & Sons, 2008.
[18] Sharma V K, Patel A S, Sharma A, et al. Design and analysis of magnetic coil for relativistic magnetron[C]//Proceedings of the 2014 International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). New York, USA:IEEE, 2014:181-183.
[19] Feynman R P, Leighton R B, Sands M. The Feynman Lectures on Physics 2 Mainly Electromagnetism and Matter[M]. Bergen, USA:Addison-Wesley, 1969.
[20] WU Jian'an, CAI Dongyang, CAO Xinrong, et al. A novel alternating magnetic field measuring device for magnetic induction hyperthermia[C]//Proceedings of the 2013 ICME International Conference on Complex Medical Engineering (CME). New York, USA:IEEE, 2013:219-223.
[21] Bordelon D E, Goldstein R C, Nemkov V S, et al. Modified solenoid coil that efficiently produces high amplitude AC magnetic fields with enhanced uniformity for biomedical applications[J].IEEE Transactions on Magnetics, 2012, 48(1):47-52.
[22] Nemkov V, Goldstein R, Ruffini R, et al. Design study of induction coil for generating magnetic field for cancer hyperthermia research[C]//Proceedings of the International Symposium on Heating by EM Sources. Padua, Italy:International Symposium on Heating by EM Sources, 2010:18-21.
[23] Nieskoski M D, Trembly B S. Comparison of a single optimized coil and a Helmholtz pair for magnetic nanoparticle hyperthermia[J].IEEE Transactions on Biomedical Engineering, 2014, 61(6):1642-1650.
[24] JIAN Linni, SHI Yujun, LIANG Jianing, et al. A novel targeted magnetic fluid hyperthermia system using HTS coil array for tumor treatment[J].IEEE Transactions on Applied Superconductivity, 2013, 23(3):4400104-4400110.
[1] 王志强, 雷震宇. 基于瞬态接触特性的科隆蛋扣件轨道波磨形成机理[J]. 清华大学学报(自然科学版), 2023, 63(11): 1844-1855.
[2] 周伟, 李敏, 丘铭军, 张西龙, 柳江, 张洪波. 基于改进遗传算法的车身板件厚度优化[J]. 清华大学学报(自然科学版), 2022, 62(3): 523-532.
[3] 张红卫, 桂良进, 范子杰. 焊接热源参数优化方法研究及验证[J]. 清华大学学报(自然科学版), 2022, 62(2): 367-373.
[4] 张宁远, 罗斌, 沈宇洲, 姜鹏, 李辉, 李庆伟. FAST索网大天顶角工况下结构响应分析[J]. 清华大学学报(自然科学版), 2022, 62(11): 1809-1815,1822.
[5] 黄伟灿, 蒋晓华, 薛芃, 李欣阳, 沈稚栋, 孙宇光. 超导直流能源管道载流导体设计[J]. 清华大学学报(自然科学版), 2022, 62(10): 1715-1720.
[6] 李彦霖, 秦本科, 薄涵亮. 电容式棒位测量传感器的解析模型及验证[J]. 清华大学学报(自然科学版), 2022, 62(10): 1636-1644.
[7] 张红卫, 桂良进, 范子杰. 驱动桥桥壳焊接残余应力仿真及试验验证[J]. 清华大学学报(自然科学版), 2022, 62(1): 116-124.
[8] 包劲青, 杨晨旭, 许建国, 刘洪霞, 王高成, 张广明, 程威, 周德胜. 基于有限元方法的水力压裂全三维全耦合数值模型及其物理实验验证[J]. 清华大学学报(自然科学版), 2021, 61(8): 833-841.
[9] 陈志恒, 荣冠, 谭尧升, 张子阳, 王克祥, 罗贯军. 白鹤滩大坝三维渗流场仿真与渗控效果评价[J]. 清华大学学报(自然科学版), 2021, 61(7): 705-713,723.
[10] 许伟, 赵争鸣, 姜齐荣. 高频变压器分布电容计算方法[J]. 清华大学学报(自然科学版), 2021, 61(10): 1088-1096.
[11] 徐文雪,吕振华. 双气室式液阻减振器阻尼特性的三维流固耦合有限元仿真分析[J]. 清华大学学报(自然科学版), 2021, 61(1): 11-20.
[12] 王波, 何洋扬, 聂冰冰, 许述财, 张金换. 底部爆炸条件下车内乘员损伤风险仿真评估[J]. 清华大学学报(自然科学版), 2020, 60(11): 902-909.
[13] 魏鲲鹏, 戴兴建, 邵宗义. 碳纤维波纹管弯曲刚度的测量及有限元分析[J]. 清华大学学报(自然科学版), 2019, 59(7): 587-592.
[14] 桂良进, 张晓前, 周驰, 范子杰. 各向异性高强钢成形极限曲线有限元预测[J]. 清华大学学报(自然科学版), 2019, 59(1): 66-72.
[15] 吕江伟, 周凯. 高力密度直线开关磁阻电机的最佳极宽比[J]. 清华大学学报(自然科学版), 2018, 58(5): 469-476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn