Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (4): 437-447    DOI: 10.16511/j.cnki.qhdxxb.2016.24.016
  自动化 本期目录 | 过刊浏览 | 高级检索 |
一种求解炼油厂连续时间调度模型的Lagrange分解算法
施磊, 江永亨, 王凌, 黄德先
清华大学 自动化系, 北京 100084
Lagrangian decomposition approach for solving continuous-time scheduling models of refinery production problems
SHI Lei, JIANG Yongheng, WANG Ling, HUANG Dexian
Department of Automation, Tsinghua University, Beijing 100084, China
全文: PDF(1398 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在炼油厂连续时间调度模型中,随着调度问题规模的增大,求解耗时会显著增长。该文提出了一种基于Lagrange分解的求解算法。根据炼油厂生产流程特点,将调度模型分解成9个子问题,并在子问题中加入辅助约束加快Lagrange乘子收敛。针对问题特点设计了乘子初始化方案、乘子迭代方案和对偶解可行化方法。案例仿真选用了3个具有不同调度周期和订单数量的案例进行仿真,结果表明:采用该文提出的算法能够显著提高模型的求解效率,算法求解时间与直接求解和普通Lagrange分解算法相比都要少,且随着问题规模的增大优势会更明显。从求解结果上看,算法能够得到原问题的最优解或者近似最优解。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
施磊
江永亨
王凌
黄德先
关键词 炼油厂调度连续时间表达Lagrange分解    
Abstract:Continuous-time models need more computational effort to solve refinery production scheduling problems as the scheduling problem size increases. A new Lagrangian decomposition approach was used which divides the whole scheduling problem into nine subproblems. The convergence of Lagrange multipliers is accelerated by adding auxiliary constraints to the subproblems. This paper gives an initialization scheme for the Lagrange multipliers, a hybrid method to update the Lagrange multipliers and a heuristic algorithm to find feasible solutions. Computational results for three cases with different time horizons and different numbers of orders show that the Lagrangian scheme improves the computational efficiency and obtains optimal or near-optimal solutions.
Key wordsrefinery scheduling    continuous-time representation    Lagrangian decomposition
收稿日期: 2015-08-30      出版日期: 2016-04-15
ZTFLH:  TP273  
通讯作者: 江永亨,副教授,E-mail:jiangyh@mail.tsinghua.edu.cn     E-mail: jiangyh@mail.tsinghua.edu.cn
引用本文:   
施磊, 江永亨, 王凌, 黄德先. 一种求解炼油厂连续时间调度模型的Lagrange分解算法[J]. 清华大学学报(自然科学版), 2016, 56(4): 437-447.
SHI Lei, JIANG Yongheng, WANG Ling, HUANG Dexian. Lagrangian decomposition approach for solving continuous-time scheduling models of refinery production problems. Journal of Tsinghua University(Science and Technology), 2016, 56(4): 437-447.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.24.016  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I4/437
  图1 炼油厂生产流程示意图
  图2 炼油厂生产流程划分示意图
  图3 Lagrange分解算法流程图
  表1 仿真案例规模
  表2 调度模型规模
  表3 案例1成品油订单信息(交货时间和交货量)
  表4 案例1仿真结果统计
  图4 案例1连续时间调度模型Lagrange分解算法原问题目标函数上下界值收敛趋势
  表5 案例2成品油订单信息(交货时间和交货量)
  图5 案例2连续时间调度模型Lagrange分解算法原问题目标函数上下界值收敛趋势
  表6 案例2仿真结果统计
  表7 案例3成品油订单信息(交货时间和交货量)
  表8 案例3仿真结果统计
  图6 案例3连续时间调度模型Lagrange分解算法原问题目标函数上下界值收敛趋势
[1] Pinto J M, Joly M, Moro L F L. Planning and scheduling models for refinery operations[J]. Computers & Chemical Engineering, 2000, 24(9-10), 2259-2276.
[2] Göthe-Lundgren M, Lundgren J T, Persson JA. An optimization model for refinery production scheduling[J]. International Journal of Production Economics, 2002, 78(3), 255-270.
[3] JIA Zhenya, Ierapetritou M. Efficient short-term scheduling of refinery operations based on a continuous time formulation[J]. Computers & Chemical Engineering, 2004, 28(6-7), 1001-1019.
[4] LUO Chunpeng, RONG Gang. Hierarchical approach for short-term scheduling in refineries[J]. Industrial & Engineering Chemistry Research, 2007, 46(11), 3656-3668.
[5] Mouret S, Grossmann I E, Pestiaux P. A new Lagrangian decomposition approach applied to the integration of refinery planning and crude-oil scheduling[J]. Computers & Chemical Engineering, 2011, 35(12), 2750-2766.
[6] CAO Cuiwen, GU Xingsheng, XIN Zhong. A data-driven rolling-horizon online scheduling model for diesel production of a real-world refinery[J]. AIChE Journal, 2013, 59(4), 1160-1174.
[7] Shah N K, LI Zukui, Ierapetritou M G. Petroleum refining operations:Key issues, advances, and opportunities[J]. Industrial & Engineering Chemistry Research, 2011, 50(3), 1161-1170.
[8] Joly M. Refinery production planning and scheduling:The refining core business[J]. Brazilian Journal of Chemical Engineering, 2012, 29(2), 371-384.
[9] SHI Lei, JIANG Yongheng, WANG Ling, et al. Refinery production scheduling involving operational transitions of mode switching under predictive control system[J]. Industrial & Engineering Chemistry Research, 2014, 53(19), 8155-8170.
[10] Terrazas-Moreno S, Trotter P A, Grossmann I E. Temporal and spatial Lagrange an decompositions in multi-site, multi-period production planning problems with sequence-dependent changeovers[J]. Computers & Chemical Engineering, 2011, 35, 2913-2928.
[11] Neiro S M, Pinto J M. Langrange an decomposition applied to multiperiod planning of petroleum refineries under uncertainty[J]. Latin American Applied Research, 2006, 36(4), 213-220.
[12] Shah N, Saharidis G, JIA Zhenya, et al. Centralized-decentralized optimization for refinery scheduling[J]. Computers & Chemical Engineering, 2009, 33(12):2091-2105.
[13] TANG Lixin, Luh P B, LIU Jiyin, et al. Steel-making process scheduling using Lagrangian relaxation[J]. International Journal of Production Research, 2002, 40(1), 55-70.
[14] LI Zukui, Ierapetritou M. Production planning and scheduling integration through augmented Lagrangian optimization[J]. Computers & Chemical Engineering, 2010, 34, 996-1006.
[15] JIANG Yongheng, Rodriguez M A, Harjunkoski I, et al. Optimal supply chain design and management over a multi-period horizon under demand uncertainty. Part Ⅱ:A Lagrangean decomposition algorithm[J]. Computers & Chemical Engineering, 2014, 62, 211-224.
[16] Knudsen B R, Grossmann I E, Foss B, et al. Lagrangian relaxation based decomposition for well scheduling in shale-gas systems[J]. Computers & Chemical Engineering, 2014, 63, 234-249.
[17] Held M, Karp R M. The traveling-salesman problem and minimum spanning trees:Part Ⅱ[J]. Mathematical Programming, 1971, 1(1):6-25.
[18] Held M, Wolfe P, Crowder H P. Validation of subgradient optimization[J]. Mathematical Programming, 1974, 6(1), 62-88.
[19] Cheney E W, Goldstein A A. Newton's method for convex programming and Tchebycheff approximation[J]. Numerische Mathematik, 1959, 1(1), 253-268.
[20] Kelley J J E. The cutting-plane method for solving convex programs[J]. Journal of the Society for Industrial & Applied Mathematics, 1960, 8(4), 703-712.
[21] Marsten R E, Hogan W W, Blankenship J W. The boxstep method for large-scale optimization[J]. Operations Research, 1975, 23(3), 389-405.
[22] Baker B M, Sheasby, J. Accelerating the convergence of subgradient optimization[J]. European Journal of Operational Research, 1999, 117, 136-144.
[1] 王振雷, 刘学彦, 王昕. 基于自适应迭代学习控制的MPC系统经济性能设计[J]. 清华大学学报(自然科学版), 2016, 56(9): 1016-1024.
[2] 王振雷, 毛福兴, 王昕. 基于二阶段自适应多模型的聚合釜温度控制[J]. 清华大学学报(自然科学版), 2016, 56(7): 707-716.
[3] 王振雷, 陈登乾, 王昕. 基于多模型切换策略的精馏塔最优控制[J]. 清华大学学报(自然科学版), 2016, 56(4): 430-436.
[4] 黄涛, 杨开明, 朱煜, 蒋毅, 胡楚雄. 3自由度硅片台解耦时变参数在线递推估计[J]. 清华大学学报(自然科学版), 2016, 56(2): 185-191.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn