Collaborative optimization of discrete structures based on a substructuring method
ZHONG Wei1, SU Ruiyi2, GUI Liangjin1, FAN Zijie1
1. State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084, China;
2. Beijing System Design Institute of Electromechanical Engineering, Beijing 100854, China
Abstract:A decomposition strategy based on substructuring is developed for optimizing complex discrete structures with a large number of design variables and a collaborative architecture is used as the solver. A large structure is decomposed into several small substructures with no overlap, where each substructure corresponds to a discipline. The variables, objectives and constraints in the original problem are assigned to the separate disciplines. Only one finite element analysis of the complete structure is performed at the system level during each iteration with optimization and finite element analyses of the substructures at the discipline levels. Coupled state variables are passed from the system level to the disciplines as constants. The coupled state variables are updated after each finite element analysis of the complete structure at the system level to coordinate the differences in the coupled state variables among disciplines. Thus, a complex structural optimization problem is decomposed into several parallel, self-governed subproblems. The results of numerical examples demonstrate that this cooperative optimization method requires less evaluations of the complete structure and is able to obtain better results with better stability than optimizing the complete structure as a whole.
钟薇, 苏瑞意, 桂良进, 范子杰. 基于子结构方法的离散结构协同优化[J]. 清华大学学报(自然科学版), 2016, 56(6): 572-579.
ZHONG Wei, SU Ruiyi, GUI Liangjin, FAN Zijie. Collaborative optimization of discrete structures based on a substructuring method. Journal of Tsinghua University(Science and Technology), 2016, 56(6): 572-579.
[1] Kroo I, Altus S, Braun R, et al. Multidisciplinary optimization methods for aircraft preliminary design [C] // Proc of 5th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis. Panama City Beach, FL: AIAA Press, 1994: 697-707.
[2] LI Haiyan, MA Mingxu, ZHANG Wenlei. Improving collaborative optimization for MDO problems with multi-objective subsystems [J]. Structural and Multidisciplinary Optimization, 2014, 49(4): 609-620.
[3] 王平, 郑松林, 吴光强. 基于协同优化和多目标遗传算法的车身结构多学科优化设计 [J]. 机械工程学报, 2011, 47(2): 102-108.WANG Ping, ZHENG Songlin, WU Guangqiang. Multidisciplinary design optimization of vehicle body structure based on collaborative optimization and multi-objective genetic algorithm [J]. Journal of Mechanical Engineering, 2011, 47(2): 102-108. (in Chinese)
[4] 李响, 李为吉, 柳长安. 一种基于几何分析的协同优化方法[J]. 机械工程学报, 2010, 46(7): 142-147.LI Xiang, LI Weiji, LIU Changan. Novel collaborative optimization method based on geometric analysis [J]. Journal of Mechanical Engineering, 2010, 46(7): 142-147. (in Chinese)
[5] 苏瑞意, 桂良进, 吴章斌, 等. 大客车车身骨架多学科协同优化设计 [J]. 机械工程学报, 2010, 46(18): 128-133.SU Ruiyi, GUI Liangjin, WU Zhangbin, et al. Multidisciplinary design and collaborative optimization for bus body [J]. Journal of Mechanical Engineering, 2010, 46(18): 128-133. (in Chinese)
[6] Balling R J, Sobieszczanski-Sobieski J. An algorithm for solving the system-level problem in multilevel optimization [J]. Structural Optimization, 1995, 9(3): 168-177.
[7] Lan F, Chen J, Lin J. Comparative analysis for bus side structures and lightweight optimization [J]. Proceedings of the Institution of Mechanical Engineers Part D: Journal of Automobile Engineering, 2004, 218(10): 1067-1075.
[8] 彭磊, 刘莉, 龙腾. 基于径向基函数的卫星平台桁架结构优化设计 [J]. 南京航空航天大学学报, 2014, 46(3): 475-480.PENG Lei, LIU Li, LONG Teng. Satellite bus truss structure optimization using radial basis function [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46(3): 475-480. (in Chinese)
[9] 唐和生, 范德伟, 王兆亮, 等. 桁架尺寸优化微分演化算法[J]. 湖南大学学报: 自然科学版, 2011, 38(11): 13-18.TANG Hesheng, FAN Dewei, WANG Zhaoliang, et al. Differential evolution algorithm to size the optimization of truss structures [J]. Journal of Hunan University: Natural Sciences, 2011, 38(11): 13-18. (in Chinese)
[10] Azad S K, Ebi O H. Discrete sizing optimization of steel trusses under multiple displacement constraints and load cases using guided stochastic search technique [J]. Structural and Multidisciplinary Optimization, 2015, 52(2): 383-404.
[11] SU Ruiyi, GUI Liangjin, FAN Zijie. Truss topology optimization using genetic algorithm with individual identification [C] // Proc of the World Congress on Engineering. London, UK, 2009: 1089-1093.
[12] 马少坤, 于淼, 崔皓东. 子结构分析的基本原理和ANSYS软件的子结构分析方法 [J]. 广西大学学报: 自然科学版, 2004, 29(2): 150-153.MA Shaokun, YU Miao, CUI Haodong. The basic principle of substructure analysis and the technique of substructure analysis with the software of ANSYS [J]. Journal of Guangxi University: Nat Sci Ed, 2004, 29(2): 150-153. (in Chinese)
[13] Amir H G, YANG Xinshe. Benchmark problems in structural optimization [C]// Slawomir K, YANG Xinshe. Computational Optimization, Methods and Algorithms. Berlin: Springer-Verlag, 2011: 259-279.
[14] Nair P B, Keane A J. Coevolutionary architecture for distributed optimization of complex coupled systems [J]. AIAA Journal, 2002, 40(7): 1434-1443.
[15] Sedaghati R. Benchmark case studies in structural design optimization using the force method [J]. International Journal of Solids and Structures, 2005, 42(21/22): 5848-5871.