Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (6): 598-604    DOI: 10.16511/j.cnki.qhdxxb.2016.22.018
  热能工程 本期目录 | 过刊浏览 | 高级检索 |
单颗粒煤焦在大空间中燃烧的数值模拟方法及实验验证
刘雨廷, 何榕
清华大学 热能工程系, 热科学与动力工程教育部重点实验室, 北京 100084
Numerical simulation method and experimental validation of a single char particle combustion model in bulk space
LIU Yuting, HE Rong
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1137 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了对煤焦颗粒的燃烧过程进行更精确的预测, 该文从多组分混合反应系统守恒方程出发, 构建了一套能够精确模拟煤焦颗粒燃烧过程的数值方法。该方法细致描述了煤焦颗粒边界层内发生的一系列物理化学过程, 有助于煤焦燃烧机理的研究, 计算量也不大。该方法还可以用于对流动形态较为简单的实际工况的模拟, 如煤焦颗粒在沉降炉内燃烧等。通过实验测得4种煤焦在沉降炉中燃烧的最终转化率, 并运用该方法对其进行预测, 证明了该方法的可靠性。模拟结果表明: 随着环境温度的升高, 煤焦燃烧速率加快, 颗粒边界层中O2摩尔分数下降更多, 而产物CO和CO2的摩尔分数却明显上升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘雨廷
何榕
关键词 煤焦燃烧模拟守恒方程沉降炉实验验证    
Abstract:A numerical method is developed based on the conservation equations for multicomponent reacting systems to better predict char particle combustion. The advantage of this method is that many physical and chemical processes occurring in the char particle boundary layer are described in detail with less CPU time, which improves the studies of the char combustion mechanism. This method can also be used to simulate real situations with relatively simple flow patterns, like the char particle combustion in a drop tube furnace (DTF). Four chars are combusted in a DTF with their final conversions measured. The predicted char conversions compare well with the measured data to validate this method. As the ambient temperature increases, the char combustion rate becomes faster and the O2 concentration decreases while the CO and CO2 amounts strongly increase in the char particle boundary layer.
Key wordschar combustion    simulation    conservation equation    drop tube furnace    experimental validation
收稿日期: 2015-06-08      出版日期: 2016-07-01
ZTFLH:  TQ534.2  
通讯作者: 何榕, 教授, E-mail: rhe@mail.tsinghua.edu.cn     E-mail: rhe@mail.tsinghua.edu.cn
引用本文:   
刘雨廷, 何榕. 单颗粒煤焦在大空间中燃烧的数值模拟方法及实验验证[J]. 清华大学学报(自然科学版), 2016, 56(6): 598-604.
LIU Yuting, HE Rong. Numerical simulation method and experimental validation of a single char particle combustion model in bulk space. Journal of Tsinghua University(Science and Technology), 2016, 56(6): 598-604.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.018  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I6/598
  图1 沉降炉结构示意图
  表1 原煤的工业分析结果(空干基)
  表2 原煤的元素分析结果(干燥基)
  表3 煤焦样品的平均粒径与孔隙参数
  表4 煤焦最终转化率预测结果与实验数据的比较
  表5 单膜模型与双膜模型的模拟结果与相对误差
  图2 煤焦燃烧过程中煤焦颗粒温度的变化
  图3 煤焦颗粒的转化率曲线
  图4 煤焦颗粒的燃烧速率曲线
  图5 煤焦燃烧过程中颗粒表面O2 摩尔分数的变化
  图6 煤焦燃烧过程中颗粒表面CO2 摩尔分数的变化
  图7 煤焦燃烧过程中颗粒表面CO 摩尔分数的变化
[1] Chen L, Yong S Z, Ghoniem A F. Oxy-fuel combustion of pulverized coal: Characterization, fundamentals, stabilization and CFD modeling [J]. Progress in Energy and Combustion Science, 2012, 38(2): 156-214.
[2] He W, He R, Cao L, et al. Numerical study of the relationships between pore structures and reaction parameters for coal char particles [J]. Combustion Science and Technology, 2012, 184(12): 2084-2099.
[3] Chen Y, He R. Fragmentation and diffusion model for coal pyrolysis [J]. Journal of Analytical and Applied Pyrolysis, 2011, 90(1): 72-79.
[4] He W, Liu Y, He R, et al. Combustion rate for char with fractal pore characteristics [J]. Combustion Science and Technology, 2013, 185(11): 1624-1643.
[5] Smith I W. The combustion rates of coal chars: A review [J]. Symposium (International) on Combustion, 1982, 19(1): 1045-1065.
[6] Geier M, Shaddix C R, Davis K A, et al. On the use of single-film models to describe the oxy-fuel combustion of pulverized coal char [J]. Applied Energy, 2012, 93: 675-679.
[7] Turns S R. An Introduction to Combustion: Concepts and Applications [M]. 2nd Ed. Boston, MA: McGraw-Hill, 2000.
[8] Avnir D, Farin D, Pfeifer P. Surface geometric irregularity of particulate materials: The fractal approach [J]. Journal of Colloid and Interface Science, 1985, 103(1): 112-123.
[9] Everson R C, Neomagus H W J P, Kaitano R. The random pore model with intraparticle diffusion for the description of combustion of char particles derived from mineral-and inertinite rich coal [J]. Fuel, 2011, 90(7): 2347-2352.
[10] Paviet F, Bals O, Antonini G. The effects of diffusional resistance on wood char gasification [J]. Process Safety and Environmental Protection, 2008, 86(2): 131-140.
[11] Zhang M, Yu J, Xu X. A new flame sheet model to reflect the influence of the oxidation of CO on the combustion of a carbon particle [J]. Combustion and Flame, 2005, 143(3): 150-158.
[12] Bejarano P A, Levendis Y A. Single-coal-particle combustion in O2/N2 and O2/CO2 environments [J]. Combustion and Flame, 2008, 153(1/2): 270-287.
[13] Kuo K K. Principles of Combustion [M]. 2nd Ed. New York, NY: John Wiley and Sons, 2005.
[14] He W, He R, Ito T, et al. Numerical investigations of CO/CO2 ratio in char combustion [J]. Combustion Science and Technology, 2011, 183(9): 868-882.
[15] Howard J B, Williams G C, Fine D H. Kinetics of carbon monoxide oxidation in postflame gases [J]. Symposium (International) on Combustion, 1973, 14(1): 975-986.
[16] He R, Sato J, Chen C H. Modeling char combustion with fractal pore effects [J]. Combustion Science and Technology, 2002, 174(4): 19-37.
[17] He R, Xu X C, Chen C H, et al. Evolution of pore fractal dimensions for burning porous chars [J]. Fuel, 1998, 77(12): 1291-1295.
[18] Tognotti L, Longwell J P, Sarofim A F. The products of the high temperature oxidation of a single char particle in an electrodynamic balance [J]. Symposium (International) on Combustion, 1991, 23(1): 1207-1213.
[19] Annamalai K, Ryan W. Interactive processes in gasification and combustion, II: Isolated carbon, coal and porous char particles [J]. Progress in Energy and Combustion Science, 1993, 19(5): 383-446.
[20] He R, Suda T, Fujimori T, et al. Effects of particle sizes on transport phenomena in single char combustion [J]. International Journal of Heat and Mass Transfer, 2003, 46(19): 3619-3627.
[1] 肖武, 王开锋, 姜晓滨, 贺高红. 遗传-模拟退火算法优化设计管壳式换热器[J]. 清华大学学报(自然科学版), 2016, 56(7): 728-734.
[2] 邱彤, 陈金财, 方舟. 基于结构导向集总的石油馏分分子重构模型[J]. 清华大学学报(自然科学版), 2016, 56(4): 424-429.
[3] 关立文, 刘慧, 付萌. 动态飞行模拟器实时运动规划算法[J]. 清华大学学报(自然科学版), 2015, 55(7): 709-715.
[4] 苏伯尼, 黄弘, 张楠. 基于情景模拟的城市内涝动态风险评估方法[J]. 清华大学学报(自然科学版), 2015, 55(6): 684-690.
[5] 李想, 顾春伟. 轴流压气机带冠静叶和不带冠静叶的比较研究[J]. 清华大学学报(自然科学版), 2015, 55(12): 1361-1366.
[6] 陈健, 童川, 彭勇, 汤志刚. 多尺寸填料塔中CO2吸收过程的实验和模拟[J]. 清华大学学报(自然科学版), 2015, 55(12): 1348-1353.
[7] 刘思, 张永良. 多向不规则波群传播的数值模拟[J]. 清华大学学报(自然科学版), 2015, 55(12): 1289-1295.
[8] 赵金龙, 唐卿, 黄弘, 苏伯尼, 李云涛, 付明. 基于数值模拟的大型外浮顶储罐区定量风险评估[J]. 清华大学学报(自然科学版), 2015, 55(10): 1143-1149.
[9] 王春财, 程嘉, 季林红, 路益嘉, 孙钰淳, 林嘉. 基于Delaunay三角形网格的2维DSMC算法实现及应用[J]. 清华大学学报(自然科学版), 2015, 55(10): 1079-1086,1097.
[10] 罗磊, 陈恳, 杜峰坡, 马振书. 基于改进型粒子群算法的曲面匹配与位姿获取[J]. 清华大学学报(自然科学版), 2015, 55(10): 1061-1066.
[11] 管清亮, 毕大鹏, 吴玉新, 张建胜. 气流床煤加氢气化反应器的数值模拟及流场特性分析[J]. 清华大学学报(自然科学版), 2015, 55(10): 1098-1104.
[12] 张璜,薄涵亮. 基于Lagrange-Euler方法的多液滴运动模型[J]. 清华大学学报(自然科学版), 2015, 55(1): 105-114.
[13] 吴韶华,张健. 湍流预混射流火焰直接模拟中入口条件的确定[J]. 清华大学学报(自然科学版), 2014, 54(6): 834-838.
[14] 张超, 秦挺鑫, 吴甦, 王金玉. 基于暖体假人的热环境下人体安全评价[J]. 清华大学学报(自然科学版), 2014, 54(2): 264-269.
[15] 赵海燕, 徐兴全, 于兴哲, 朱小武. 旋挖钻机钻杆键条焊接接头的残余应力[J]. 清华大学学报(自然科学版), 2014, 54(2): 191-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn