Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (10): 1079-1084    DOI: 10.16511/j.cnki.qhdxxb.2016.22.042
  热能工程 本期目录 | 过刊浏览 | 高级检索 |
基于显微CT技术的结焦砂3维孔隙结构精细表征
史琳1, 许然1, 许强辉1, 须颖2, 郑立才2
1. 清华大学 热科学与动力工程教育部重点实验室, 北京 100084;
2. 三英精密仪器有限公司, 天津 300000
Advanced characterization of three-dimensional pores in coking sand by micro-CT
SHI Lin1, XU Ran1, XU Qianghui1, XU Ying2, ZHENG Licai2
1. Key Laboratory of Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China;
2. Sanying Precision Instruments Ltd., Tianjin 300000, China
全文: PDF(3060 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 结焦带的结焦情况是影响稠油火烧油层技术开发成效的重要因素。目前该领域对于焦炭分布情况和结焦量的研究停留在2维表面观察和宏观实验参数测定,无法深入描述稠油火烧过程作用机理和进行较准确的数值模拟。显微CT技术作为一种无损获得材料内部微观结构信息的技术已经开始应用于石油地质领域。该文利用油层高温高压反应模拟实验装置在实验室环境下获得结焦砂样品,并利用显微CT技术得到结焦样品孔隙尺度的3维重构图像。该研究通过选择适当的扫描参数获得相对较高对比度的灰度图,再通过分水岭分割法和Chen-Vese模型算法对CT灰度图进行图像分割,得到表征孔隙、焦炭和模拟砂的3维重构图。为了验证图像的真实性,采用TGA热重分析仪和真密度计进行实验验证,并通过建立表征函数证明显微CT 3维重构图像的真实性和合理性。该研究为稠油火烧油层领域结焦量、结焦量与孔隙度关系以及多孔介质渗流模拟研究提供基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史琳
许然
许强辉
须颖
郑立才
关键词 显微CT火烧油层焦炭图像处理    
Abstract:Coke formation is very important for in-situ oil combustion. Previous studies of the coke distribution and coke content for in-situ combustion have used two-dimensional surface observations and macro parameter measurements that cannot accurately describe the mechanisms for the burning of heavy oil which limits the accuracy of numerical simulations. X-ray microtomography (micro-CT) has been used as a non-destructive technique to characterize the material's microstructure for petroleum geology. This paper describes micro-CT measurements of coking sand samples in a laboratory to reconstruct three dimensional pore scale images. These measurements give relatively high contrast gray scale images with the watershed segmentation method and the Chen-Vese model algorithm used to construct the three dimensional images of the pores coke or in sand. The images are verified against data from TGA and densitometer measurements with good agreement. This method provides excellent models for analyzing the coke content, the relationship between the porosity and the coking content, and even for porous media fluid flow simulations of in-situ combustion.
Key wordsmicro-CT    in-situ combustion    coke    image processing
收稿日期: 2016-03-11      出版日期: 2016-10-15
ZTFLH:  TK123  
引用本文:   
史琳, 许然, 许强辉, 须颖, 郑立才. 基于显微CT技术的结焦砂3维孔隙结构精细表征[J]. 清华大学学报(自然科学版), 2016, 56(10): 1079-1084.
SHI Lin, XU Ran, XU Qianghui, XU Ying, ZHENG Licai. Advanced characterization of three-dimensional pores in coking sand by micro-CT. Journal of Tsinghua University(Science and Technology), 2016, 56(10): 1079-1084.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.22.042  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I10/1079
  图 利用激光粒度分析仪测量的玻璃微珠粒度分布
  表1 油层高温高压反应模拟实验反应条件
  表 样品扫描显微镜的各项参数
  图 含焦量5.08%样品第372张2维切片图处理前后对比
  图 样品SEM扫描图
  图 含焦量5.08%样品第372张切片灰度值分布直方图
  图 图像分割主要步骤的2维切片图(以含焦量为5.08%的样品第372张2维切片图为例)
  表 样品各区域表征函数与孔隙度标准差表
  图 结焦样品3维重构图
  图 两种方法表征函数随含焦量变化曲线图
  表4 6种结焦样品焦炭密度与孔隙度
[1] Alboudwarej H, Felix J, Taylor S, et al. Highlighting heavy oil. Oilfield Review, 2006, 18(2): 34-53. http://www.slb.com/~/media/Files/resources/oilfield_review/ors06/sum06/heavy_oil.pdf.
[2] Mahinpey N, Ambalae A, Asghari K. In situ combustion in enhanced oil recovery (EOR): A review [J]. Chemical Engineering Communications, 2007, 194(8): 995-1021.
[3] Moore R, Laureshen C, Mehta S, et al. Observations and design considerations for in situ combustion projects [J]. Journal of Canadian Petroleum Technology, 1999, 38(13): 97-100.
[4] Ofosu-Asiedu K, Hughes R, Price D, et al. SEM/AIA study of size distribution and mineral content of Athabasca oil sand and its coke residues [J]. Energy Sources, 1992, 14(1): 95-105.
[5] Verkoczy B, Freitag N P. Oxidation of heavy oils and their SARA fractions: Its role in modelling in-situ combustion [C]//Petroleum Conference of the South Saskatchewan Section. Regina, Canada, 1997: 19-22.
[6] Fau G, Gascoin N, Gillard P, et al. Fuel pyrolysis through porous media: Coke formation and coupled effect on permeability [J]. Journal of Analytical and Applied Pyrolysis, 2012, 95: 180-188.
[7] Osman E, Aggour M, Abu-Khamsin S. In-situ sand consolidation by low-temperature oxidation [J]. SPE Production & Facilities, 2000, 15(1): 42-49.
[8] 须颖, 邹晶, 姚淑艳. X射线三维显微镜及其典型应用 [J]. CT理论与应用研究, 2014, 23(6): 967-977.XU Ying, ZOU Jing, YAO Shuyan. 3D X-ray microscope and its typical applications [J]. CT Theory and Applications, 2014, 23(6): 967-977. (in Chinese)
[9] Chen C, Packman A I, Gaillard J F. Pore-scale analysis of permeability reduction resulting from colloid deposition [J]. Geophysical Research Letters, 2008, 35(7): 199-208.
[10] Coenen J, Tchouparova E, Jing X. Measurement parameters and resolution aspects of micro X-ray tomography for advanced core analysis [C]//Proceedings of the International Symposium of the Society of Core Analysts. Abu Dhabi, UAE, 2004.
[11] Arns C H, Knackstedt M A, Pinczewski W V, et al. Virtual permeametry on microtomographic images [J]. Journal of Petroleum Science and Engineering, 2004, 45(1): 41-46.
[12] Vagnon A, Riviere J P, Bellet D, et al. 3D statistical analysis of a copper powder sintering observed in situ by synchrotron microtomography [J]. Acta Materialia, 2008, 56: 1084-1093.
[13] 江航, 昝成, 李阳, 等. 一种油藏内反应与渗流特性一体化测试方法与装置. 中国:CN103758512A. 2014-04-30.JIANG Hang, ZAN Cheng, LI Yang, et al. Integration Testing Method and Device for Response within the Reservoir and Seepage Characteristics. China: CN103758512A. 2014-04-30. (in Chinese)
[14] 张朝宗, 郭志平, 张朋, 等. 工业CT技术和原理 [M]. 北京: 科学出版社, 2009.ZHANG Chaozong, GUO Zhiping, ZHANG Peng, et al. Industrial Computed Tomography (CT) Technology and Principle [M]. Beijing: Science Press, 2009. (in Chinese)
[15] 谭闻濒. 多孔介质中稠油结焦特性及其渗流实验研究[D]. 北京:清华大学, 2015.TAN Wenbin. Coking Properties of Heavy Oil in Porous Media and Its Seepage Experiment Research [D]. Beijing: Tsinghua University, 2015. (in Chinese)
[16] Peter Z, Bousson V, Bergot C, et al. A constrained region growing approach based on watershed for the segmentation of low contrast structures in bone micro-CT images [J]. Pattern Recognition, 2008, 41: 2358-2368.
[17] Chan T F, SHEN Jianhong. Image Processing and Analysis [M]. Cambridge, UK: Cambridge University Press, 2005.
[18] Chan T F, Vese L A. Active contours without edges [J]. IEEE Transactions on Image Processing, 2001, 10(2): 266-277.
[1] 谢维强, 张晓平, 刘晓丽, 周小雄, 刘泉声. 基于多角度投影方法的砂土颗粒三维形态表征[J]. 清华大学学报(自然科学版), 2024, 64(2): 294-302.
[2] 张天一, 朱志明, 朱传辉, 孙博文. 用于弧焊过程的视觉传感图像处理及特征信息提取方法[J]. 清华大学学报(自然科学版), 2022, 62(1): 156-162.
[3] 程世佳, 朱志明, 符平坡. 基于电弧图像的脉冲TIG焊电弧形态及特征温度演变规律[J]. 清华大学学报(自然科学版), 2021, 61(9): 994-1001.
[4] 朱志明, 程世佳, 于英飞, 符平坡. 焊接电弧形貌判别模型及钨极高度的影响规律[J]. 清华大学学报(自然科学版), 2020, 60(4): 285-291.
[5] 孙博文, 朱志明, 郭吉昌, 张天一. 基于组合激光结构光的视觉传感器检测算法及图像处理流程优化[J]. 清华大学学报(自然科学版), 2019, 59(6): 445-452.
[6] 张思敏, 王国磊, 于乾坤, 华宵桐, 宋立滨, 陈恳. 基于图像处理的喷涂雾锥角影响因素分析[J]. 清华大学学报(自然科学版), 2019, 59(2): 103-110.
[7] 聂鼎, 安雪晖. 基于图像处理的净浆扩展度测量工具开发[J]. 清华大学学报(自然科学版), 2016, 56(12): 1249-1254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn