Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2016, Vol. 56 Issue (12): 1255-1263    DOI: 10.16511/j.cnki.qhdxxb.2016.25.035
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
考虑混凝土损伤效应的销栓作用承载力计算模型
李鹏飞1, 安雪晖1, 何世钦2, 陈宸2
1. 清华大学 水沙科学与水利水电工程国家重点实验室, 北京 100084;
2. 北方工业大学 土木工程学院, 北京 100144
Mathematical model for dowel bearing capacity considering the effect of concrete damage
LI Pengfei1, AN Xuehui1, HE Shiqin2, CHEN Chen2
1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China;
2. College of Civil Engineering, North China University of Technology, Beijing 100144, China
全文: PDF(1815 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在已有钢筋销栓作用承载力计算模型的基础上,该文提出了考虑混凝土损伤效应的承载力计算模型,进行了11个试件的直接剪切实验,研究钢筋直径、混凝土抗压强度和保护层厚度对销栓作用承载性能的影响。基于实验和数值分析结果,率定混凝土局部受压损伤效应所造成的承载性能衰减并对常用模型进行修正。通过对不同保护层厚度试件的数值模拟,率定出破坏形态转化的关键影响因子,并在计算模型中加以考虑。将直接剪切实验和文献实验的结果与修正后的模型计算结果进行对比发现:该文提出的考虑损伤效应的计算模型可以准确地预测不同破坏模式下钢筋销栓作用的承载性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李鹏飞
安雪晖
何世钦
陈宸
关键词 销栓作用损伤效应计算模型混凝土保护层有限元法    
Abstract:The measured bearing capacities of dowels embedded in concrete were compared with existing formula for various conditions. A total of 11 specimens were tested to failure to investigate the effect of the bar diameter, concrete strength and concrete cover on the dowel bearing capacity. The effect of localized crushing of the concrete found from the experiment and numerical results was used to improve the formula accuracy. Specimens with different concrete covers were simulated to study the key parameters affecters the failure mechanisms. Comparisons of the analytical results with experimental data showed that the model gives good predictions for both failure mechanisms.
Key wordsdowel action    damage effect    mathematical model    concrete cover    finite element method
收稿日期: 2016-02-01      出版日期: 2016-12-15
ZTFLH:  TU312  
  TV32  
通讯作者: 安雪晖,教授,E-mail:anxue@tsinghua.edu.cn     E-mail: anxue@tsinghua.edu.cn
引用本文:   
李鹏飞, 安雪晖, 何世钦, 陈宸. 考虑混凝土损伤效应的销栓作用承载力计算模型[J]. 清华大学学报(自然科学版), 2016, 56(12): 1255-1263.
LI Pengfei, AN Xuehui, HE Shiqin, CHEN Chen. Mathematical model for dowel bearing capacity considering the effect of concrete damage. Journal of Tsinghua University(Science and Technology), 2016, 56(12): 1255-1263.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2016.25.035  或          http://jst.tsinghuajournals.com/CN/Y2016/V56/I12/1255
  图1 实验方案设计及试件破坏照片
  表1 混凝土配合比
  表2 实验参数及最终承载力
  图2 混凝土的耦合损伤效应及有限元模拟结果
  表3 直接剪切实验计算结果对比
  表4 DeiPoli实验[17-18]计算结果对比
  图3 承载力计算结果对比
  图4 损伤因子与材性因子的相关关系
  表5 不同保护层厚度试件的模拟结果
  图5 保护层影响因子的率定
  表6 文献实验参数和破坏模式
  图6 模型计算结果与实验结果对比
[1] 过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 北京:清华大学出版社, 2003.GUO Zhenhai, SHI Xudong. Reinforced Concrete Theory and Analyse[M]. Beijing:Tsinghua University Press, 2003. (in Chinese)
[2] Nakaki S D, Stanton J F, Sritharan S. An overview of the PRESSS five-story precast test building[J]. PCI Journal, 1999, 44(2):26-39.
[3] Kulkarni S A, Li B, Yip W K. Finite element analysis of precast hybrid-steel concrete connections under cyclic loading[J]. Journal of Constructional Steel Research, 2008, 64(2):190-201.
[4] 王锡财, 陈述恒, 李康龙. 丽江7.0级地震丽江县城房屋震害分析[J]. 地震研究, 1997, 20(4):417-423.WANG Xicai, CHEN Shuheng, LI Kanglong. House damage analyses in Lijiang town suffered from Lijiang M=7.0 earthquake[J]. Journal of Seismological Research, 1997, 20(4):417-423. (in Chinese).
[5] Moradi A R, Soltani M, Tasnimi A. A simplified constitutive model for dowel action across RC cracks[J]. Journal of Advanced Concrete Technology, 2012, 10(8):264-277.
[6] Maekawa K, Qureshi J. Behavior of embedded bars in concrete under combined axial pullout and transverse displacement[J]. Concrete Library International, 1996, 15(532):183-196.
[7] Vintzeleou E N, Tassios T P. Mathematical models for dowel action under monotonic and cyclic conditions[J]. Magazine of Concrete Research, 1986, 38(134):13-22.
[8] Vintzeleou E N, Tassios T P. Behavior of dowels under cyclic deformations[J]. ACI Structural Journal, 1987, 84(1):18-30.
[9] Rasmussen B H. The carrying capacity of transversely loaded bolts and dowels embedded in concrete[J]. Bygningsstatiske Meddelser, 1963, 34(2):39-55.
[10] Krefeld W J, Thurston C W. Contribution of longitudinal steel to shear resistance of reinforced concrete beams[J]. ACI Journal Proceedings, 1966, 63(3):325-344.
[11] Houde J, Mirza M S. A finite element analysis of shear strength of reinforced concrete beams[J]. ACI Special Publication, 1974, 42(1):103-128.
[12] Bauman T, Rusch H. Versuche zum studium der verd ubelungswirkung der biegezugbewehrung eines stahlbetonbalken[J]. Deutscher Ausschuss Fur Stahlbeton, Bulletin, 1970, 210(1):125-139.
[13] Shima H, Chou L L, Okamura H. Micro and macro models for bond in reinforced concrete[J]. Journal of the Faculty of Engineering, 1987, 39(2):133-194.
[14] Soroushian P, Obaseki K, Rojas M C. Bearing strength and stiffness of concrete under reinforcing bars[J]. ACI Materials Journal, 1987, 84(3):179-184.
[15] Shang F, An X, Kawai S, et al. Open-slip coupled model for simulating three-dimensional bond behavior of reinforcing bars in concrete[J]. Computers and Concrete, 2010, 7(5):403-419.
[16] Shang F, An X, Mishima T, et al. Three-dimensional nonlinear bond model incorporating transverse action in corroded RC members[J]. Journal of Advanced Concrete Technology, 2011, 9(1):89-102.
[17] Dei Poli S, Di Prisco M, Gambarova P G. Shear response, deformations, and subgrade stiffness of a dowel bar embedded in concrete[J]. ACI Structural Journal, 1992, 89(6):665-675.
[18] Dei Poli S, Di Prisco M, Gambarova P G. Cover and stirrup effects on the shear response of dowel bar embedded in concrete[J]. ACI Structural Journal, 1993, 90(4):441-450.
[19] Millard S G, Johnson R P. Shear transfer across cracks in reinforced concrete due to aggregate interlock and to dowel action[J]. Magazine of Concrete Research, 1984, 36(126):9-21.
[20] Soroushian P, Obaseki K, Rojas M C, et al. Analysis of dowel bars acting against concrete core[J]. Journal of the American Concrete Institute, 1986, 83(4):642-649.
[21] Paulay T, Park R, Phillips M H. Horizontal construction joints in cast-in-place reinforced concrete[J]. ACI Special Publication, 1974, 42(2):599-616."
[1] 关立文, 杨亮亮, 王立平, 陈学尚, 王耀辉, 黄克. “S”形试件间歇性切削温度场建模与分析[J]. 清华大学学报(自然科学版), 2016, 56(2): 192-199.
[2] 曹梦雪, 李爱军, 方强. 基于GSOM模型的音位范畴习得建模[J]. 清华大学学报(自然科学版), 2016, 56(11): 1154-1160.
[3] 孙红梅, 赵菲, 张亚新. 开孔接管对卧式储罐承载能力的影响分析[J]. 清华大学学报(自然科学版), 2016, 56(1): 102-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn