Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (2): 208-212    DOI: 10.16511/j.cnki.qhdxxb.2017.22.016
  信息工程 本期目录 | 过刊浏览 | 高级检索 |
基于组件服务质量和服务性能的云服务性能瓶颈诊断方法
郭军, 马安香, 闫永明, 孟煜, 张斌
东北大学 计算机科学与工程学院, 沈阳 110819
Cloud service performance bottleneck diagnosis based on the component service quality and performance
GUO Jun, MA Anxiang, YAN Yongming, MENG Yu, ZHANG Bin
School of Computer Science and Engineering, Northeastern University, Shenyang 110819, China
全文: PDF(1276 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 瓶颈组件服务的诊断是保障面向服务业务流程的云服务系统性能的关键环节。传统诊断方法是通过评估组件服务的最大运行时延来确定导致整个组合服务质量变差的组件服务,未考虑组件服务的重要性,影响判断的准确性。该文在分析了各个组件服务质量的基础上,综合评估组件服务质量和重要性,提出了一种基于组件服务质量和服务性能的云服务性能瓶颈诊断方法,用来确定云服务瓶颈组件服务。仿真实验的结果验证了该瓶颈诊断方法的有效性和准确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭军
马安香
闫永明
孟煜
张斌
关键词 云服务组件瓶颈诊断服务质量服务性能    
Abstract:Bottlenecks in component services need to be identified to ensure the performance of cloud service system-oriented service business processes. Traditional approaches for evaluating component service bottlenecks often evaluate the maximum run time delay in the component services to determine the cause of the quality-of-service deterioration. However, these approaches do not consider the importance of the component services, which influences the evaluation accuracy. A cloud service bottleneck diagnostic method is given here based on the quality of service on the various components in the analysis for comprehensive assessments of the quality of service and the component importance to identify cloud service bottlenecks in component services. Simulations show the effectiveness and accuracy of this bottleneck diagnosis method.
Key wordscloud services    component    bottleneck diagnosis    service quality    service performance
收稿日期: 2016-07-01      出版日期: 2017-02-15
ZTFLH:  TP311.5  
引用本文:   
郭军, 马安香, 闫永明, 孟煜, 张斌. 基于组件服务质量和服务性能的云服务性能瓶颈诊断方法[J]. 清华大学学报(自然科学版), 2017, 57(2): 208-212.
GUO Jun, MA Anxiang, YAN Yongming, MENG Yu, ZHANG Bin. Cloud service performance bottleneck diagnosis based on the component service quality and performance. Journal of Tsinghua University(Science and Technology), 2017, 57(2): 208-212.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.016  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I2/208
  图1 瓶颈诊断基本过程
  表1 组件服务相关参数符号
  图2 组件服务调用关系
  图3 基于组件服务质量和重要性的性能瓶颈诊断算法
  表2 组件服务调用数量表
  图4 增量部署两种组件服务副本的效果对比
  图5 响应时间随副本个数变化
[1] Cardellini V, Casalicchio E, Grassi V, et al. Moses:A framework for QoS driven runtime adaptation of service-oriented systems[J]. IEEE Transactions on Software Engineering, 2012, 38(5):1138-1159.
[2] ZHU Jieming, HE Pinjia, ZHENG Zibin, et al. Towards online, accurate, and scalable QoS prediction for runtime service adaptation[C]//IEEE International Conference on Distributed Computing Systems. Madrid, Spain, 2014:318-327.
[3] Tsai W T, Zhong P, Elston J, et al. Service replication strategies with MapReduce in clouds[C]//2011 Tenth International Symposium on Autonomous Decentralized Systems. Tokyo & Hiroshima, Japan:IEEE Press, 2011:381-388.
[4] Rosa L, Rodrigues L, Lopes A, et al. Self-management of adaptable component-based applications[J]. IEEE Transactions on Software Engineering, 2013, 39(3):403-421.
[5] Mirandola R, Potena P, Riccobene E, et al. A reliability model for service component architectures[J]. Journal of Systems and Software, 2014, 89(2):109-127.
[6] Binz T, Leymann F, Schumm D. CMotion:A framework for migration of applications into and between clouds[C]//2011 IEEE International Conference on Service-Oriented Computing and Applications (SOCA). Irvine, CA, USA:IEEE Press, 2011:1-4.
[7] 赵秀涛, 张斌, 张长胜. 一种基于服务选取的SBS云资源优化分配方法[J]. 软件学报, 2015, 26(4):867-885.ZHAO Xiutao, ZHANG Bin, ZHANG Changsheng. Service selection based resource allocation for SBS in cloud environments[J]. Journal of Software, 2015, 26(4):867-885. (in Chinese)
[8] Vogel T, Giese H. Model-driven engineering of self-adaptive software with EUREMA[J]. ACM Transactions on Autonomous & Adaptive Systems, 2014, 8(4):1-33.
[9] 杨雷, 邢禾续, 代钰, 等. 考虑虚拟机间性能互扰的虚拟资源分配方法[J]. 通信学报, 2014, 35(9):79-90.YANG Lei, XING Hexu, DAI Yu, et al. Virtual resource allocation method with the consideration of performance interference among virtual machines[J]. Journal on Commuications, 2014, 35(9):79-90. (in Chinese)
[10] Iqbal W, Dailey M N, Carrera D, et al. SLA-driven automatic bottleneck detection and resolution for read intensive multi-tier applications hosted on a cloud[C]//International Conference on Grid and Pervasive Computing. Hualien, China, 2010:37-46.
[11] SONG Ying, SUN Yuzhong, SHI Weisong. A two-tiered on-demand resource allocation mechanism for VM-based data centers[J]. IEEE Transactions on Services Computing, 2013, 6(1):116-129.
[12] Jha P, Bali V, Narula S, et al. Optimal component selection based on cohesion and coupling for component based software system under build-or-buy scheme[J]. Journal of Computational Science, 2014, 5(2):233-242.
[13] ZHENG Zibin, Zhou T C, Lyu M R, et al. Component ranking for fault-tolerant cloud applications[J]. IEEE Transactions on Services Computing, 2012, 5(4):540-550.
[1] 成荣, 王希远, 朱煜, 杨开明. 基于有限元方法的光刻机工件台线管组件结构优化[J]. 清华大学学报(自然科学版), 2017, 57(8): 798-802.
[2] 蔡鸿明, 姜祖海, 姜丽红. 分布式环境下业务模型的数据存储及访问框架[J]. 清华大学学报(自然科学版), 2017, 57(6): 569-574.
[3] 高晓琳, 晏坚, 陆建华. 一种航空Ad hoc网络优先级权重速率控制算法[J]. 清华大学学报(自然科学版), 2017, 57(3): 293-298.
[4] 米翔, 赵明, 许希斌, 王京. 终端直接通信中基于统计QoS保证的资源优化[J]. 清华大学学报(自然科学版), 2017, 57(12): 1296-1302.
[5] 彭功状, 毛华超, 张和明. 基于组件的多分辨率动态结构建模与仿真[J]. 清华大学学报(自然科学版), 2016, 56(9): 974-979,984.
[6] 丁荣涛. 基于合作博弈的港口物流链云服务组织方法[J]. 清华大学学报(自然科学版), 2014, 54(3): 366-372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn