Abstract:Baseflow separation is essential in hydrology, water resources and water ecology. This study compares several baseflow separation methods with a digital filter baseflow separation method based on a master recession curve then developed to reduce the parameter uncertainty. A study of the Nu river in China shows that this digital filter method gives smoother baseflows than the BFI method and the HYSEP method; however, it is sensitive to model the parameters. Reasonable baseflows were obtained by using a recession curve to determine the digital filter parameters. The results show that the baseflow in the Nu River accounts for 39 to 55 percent of the total runoff in different sub-basins and that the inter-annual variation of the baseflow is relatively small.
周星, 沈忱, 倪广恒, 胡宏昌. 结合退水曲线的数字滤波基流分割方法[J]. 清华大学学报(自然科学版), 2017, 57(3): 318-323,330.
ZHOU Xing, SHEN Chen, NI Guangheng, HU Hongchang. Digital filter baseflow separation method based on a master recession curve. Journal of Tsinghua University(Science and Technology), 2017, 57(3): 318-323,330.
徐磊磊, 刘敬林, 金昌杰, 等. 水文过程的基流分割方法研究进展[J]. 应用生态学报, 2011, 22(11):3073-3080. XU Leilei, LIU Jinglin, JIN Changjie, et al. Baseflow separation methods in hydrological process research:A review[J]. Chinese Journal of Applied Ecology, 2011, 22(11):3073-3080. (in Chinese)
[2]
Duvert C, Gratiot N, Anguiano-Valencia R, et al. Baseflow control on sediment flux connectivity:Insights from a nested catchment study in Central Mexico[J]. CATENA, 2011, 87(1):129-140.
[3]
Kim H S. Application of a baseflow filter for evaluating model structure suitability of the IHACRES CMD[J]. J Hydro, 2015, 521:543-555.
[4]
Blumstock M, Tetzlaff D, Malcolm I A, et al. Baseflow dynamics:Multi-tracer surveys to assess variable groundwater contributions to montane streams under low flows[J]. J Hydrol, 2015, 527:1021-1033.
[5]
Ferket B V A, Samain B, Pauwels V R N. Internal validation of conceptual rainfall-runoff models using baseflow separation[J]. J Hydrol, 2010, 381:158-173.
[6]
Cao W, Bowden W B, Davie T, et al. Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability[J]. Hydrol Process, 2006, 20(5):1057-1073.
[7]
Vázquez R F, Willems P, Feyen J. Improving the predictions of a MIKE SHE catchment-scale application by using a multi-criteria approach[J]. Hydrol Process, 2008, 22(13):2159-2179.
[8]
Tallaksen L M. A review of baseflow recession analysis[J]. J Hydrol, 1995, 165(1):349-370.
[9]
Klaus J, McDonnell J J. Hydrograph separation using stable isotopes:Review and evaluation[J]. J Hydrol, 2013, 505:47-64.
[10]
Ladouche B, Probst A, Viville D, et al. Hydrograph separation using isotopic, chemical and hydrological approaches (Strengbach catchment, France)[J]. J Hydrol, 2001, 242(3-4):255-274.
[11]
Klaus J, McDonnell J J. Hydrograph separation using stable isotopes:Review and evaluation[J]. J Hydrol, 2013, 505:47-64.
[12]
Miller M P, Johnson H M, Susong D D et al. A new approach for continuous estimation of baseflow using discrete water quality data:Method description and comparison with baseflow estimates from two existing approaches[J]. J Hydrol, 2015, 522:203-210.
[13]
Institute of Hydrology. Low Flow Studies[R]. Wallingford, Oxfordshire:Institute of Hydrology, 1980.
[14]
Lyne V, Hollick M. Stochastic time-variable rainfall-runoff modelling[C]//Institute of Engineers Australia National Conference. Hydrology and Water Resources Symposium. Perth, Australia, 1979:89-93.
[15]
Chapman T, Maxwell. A comparison of algorithms for stream flow recession and baseflow separation[J]. Hydrol Process, 1999, 13(5):701-714.
[16]
Eckhardt K. How to construct recursive digital filters for baseflow separation[J]. Hydrol Process, 2005, 19(2):507-515.
[17]
Sloto R A, Crouse M Y. HYSEP:A Computer Program for Streamflow Hydrograph Separation and Analysis[R]. USA Geological Survey Water-Resources Investigations, 1996.
[18]
Bloomfield J P, Allen D J, Griffiths K J. Examining geological controls on baseflow index (BFI) using regression analysis:An illustration from the Thames Basin, UK[J]. J Hydrol, 2009, 373(1-2):164-176.
[19]
周伟, 叶春茂, 金侃, 等. 雷达目标双曲线调频回波生成[J]. 清华大学学报(自然科学版), 2015, 55(8):878-883. ZHOU Wei, YE Chunmao, JIN Kan, et al. Radar echo generation for hyperbolic frequency-modulation waveforms[J]. Journal of Tsinghua University (Science and Technology), 2015, 55(8):878-883. (in Chinese)
[20]
张波, 王文军, 张伟, 等. 驾驶人眼睛局部区域定位算法[J]. 清华大学学报(自然科学版), 2014, 54(6):756-762. ZHANG Bo, WANG Wenjun, ZHANG Wei, et al. Driver's eye region location algorithm[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(6):756-762. (in Chinese)
[21]
邓可欣. 基于超边图匹配的视网膜眼底图像配准算法[J]. 清华大学学报(自然科学版), 2014, 54(5):568-574. DENG Kexin. Retinal image registration based on hyper-edge graph matching[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(5):568-574. (in Chinese)
[21]
杨蕊, 王龙, 韩春玲, 等. 9种基流分割方法在南盘江上游的应用对比[J]. 云南农业大学学报(自然科学版), 2013, 28(5):707-712. YANG Rui, WANG Long, HAN Chunling, et al. Nine kinds of base flow separation methods apply and comparative in upper reach of Nanpan river[J]. Journal of Yunnan Agricultural University(Science and Technology), 2013, 28(5):707-712. (in Chinese)
[22]
刘新有. 怒江流域水沙时空分异规律及其驱动机制研究[D]. 昆明:云南大学, 2013. LIU Xinyou. Spatial and Temporal Variation of Runoff and Sediment and Driving Mechanism in Nu River[D]. Kunming:Yunnan University, 2013. (in Chinese)