Abstract:During the building of the first core of the pebble bed high-temperature gas-cooled reactor (PBR), the ratio between the fuel spheres and graphite spheres, the fill material in the gaps in the core and the cavity height above the pebble bed will change. Thus, the neutronics design of the first core using the deterministic VSOP code needs some special treatments. The approximations for the first are an evaluated using a more detailed model of the first core analyzed by a general Monte Carlo code. Comparisons of the predictions of the two codes show that the special treatments for the first core used with the VSOP code will not cause significant errors include using the equivalent sphere model to calculate the thermal spectrum, calculating the reactivity of the gap fill material using the streaming correction method, heating the helium atmosphere as a vacuum, and using anisotropic diffusion coefficients to model the large top cavity. Thus, these special treatments for the first core used by the VSOP code are acceptable.
张竞宇, 李富, 孙玉良. 球床高温气冷堆初装堆芯的物理计算方法及验证[J]. 清华大学学报(自然科学版), 2017, 57(4): 405-409.
ZHANG Jingyu, LI Fu, SUN Yuliang. Neutronics calculation methods for the first core of the pebble bed high temperature gas cooled reactor. Journal of Tsinghua University(Science and Technology), 2017, 57(4): 405-409.
ZHANG Zuoyi, WU Zongxin, WANG Dazhong, et al. Current status and technical description of Chinese 2×250 MWth HTR-PM demonstration plant[J]. Nuclear Engineering and Design, 2009, 239(7): 1212-1219.
[2]
Rütten H J, Haas K A, Brockmann H, et al. VSOP (99/05) Computer Code System for Reactor Physics and Fuel Cycle Simulation, Jül-4189[R]. Jülich, Germany: Forschungszentrum Jülich, 2005.
[3]
International Atomic Energy Agency. Evaluation of High Temperature Gas Cooled Reactor Performance: Benchmark Analysis Related to Initial Testing of the HTTR and HTR-10, IAEA-TECDOC-1382[R]. Vienna, Austria: IAEA, 2003.
[4]
Briesmeister J F. MCNP-A General Monte Carlo N-particle Transport Code Version 4C, LA-13709-M[R]. Los Alamos, USA: Los Alamos National Laboratory, 2000.
[5]
Joanou C D, Dudek J S. GAM-I-A Consistant P1 Multigroup Code for the Calculation of Fast Neutron Spectra and Multigroup Constants, GA-1850[R]. San Diego, USA: General Atomic, 1961.
[6]
Honek H C. THERMOS-A Thermalization Transport Theory Code for Reactor Lattice Calculation, BNL-5826[R]. New York, USA: Brookhaven National Laboratory, 1961.
[7]
Lieberoth J, Stojadinovic A. Neutron streaming in pebble beds[J]. Nuclear Science and Engineering, 1980, 76(3): 336-344.
[8]
经荥清, 杨永伟, 古玉祥, 等. HTR-10初次临界装料预估[J]. 清华大学学报(自然科学版), 2001, 41(4): 116-119.JING Xingqing, YANG Yongwei, GU Yuxiang, et al. Prediction calculation of HTR-10 fuel loading for the first criticality[J]. Journal of Tsinghua University (Science and Technology), 2001, 41(4): 116-119. (in Chinese)
[9]
Gerwin H, Scherer W. Treatment of the upper cavity in a pebble-bed high-temperature gas-cooled reactor by diffusion theory[J]. Nuclear Science and Engineering, 1987, 97(1): 9-19.
[10]
常鸿, 杨永伟, 经荥清. 球床式高温气冷堆初次临界物理计算的蒙特卡罗方法模型分析[J]. 核动力工程, 2005, 26(5): 419-424.CHANG Hong, YANG Yongwei, JING Xingqing. Model analysis of Monte Carlo method for first criticality physics calculation in pebble bed high temperature gas-cooled reactor[J]. Nuclear Power Engineering, 2005, 26(5): 419-424. (in Chinese)
[11]
经荥清, 杨永伟, 许云林. 蒙特卡罗方法用于HTR-10首次临界燃料装料预估的校算[J]. 核动力工程, 2005, 26(1): 28-34.JING Xingqing, YANG Yongwei, XU Yunlin. Application of Monte Carlo method for verification calculation in fuel loading prediction for first criticality of HTR-10[J]. Nuclear Power Engineering, 2005, 26(1): 28-34. (in Chinese)
[12]
Seker V, Colak V. HTR-10 full core first criticality analysis with MCNP[J]. Nuclear Engineering and Design, 2003, 222(2-3): 263-270.