Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (5): 471-475,482    DOI: 10.16511/j.cnki.qhdxxb.2017.22.023
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
稳压式变极性焊接电源中的IGBT功率损耗和温升模型
杨中宇, 朱志明, 刘博, 汤莹莹
清华大学 机械工程系, 先进成形制造教育部重点实验室, 北京 100084
Power loss and temperature rise model for an IGBT in a variable polarity welding power supply with a reverse voltage stabilizer
YANG Zhongyu, ZHU Zhiming, LIU Bo, TANG Yingying
Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(2316 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在稳压式变极性焊接电源的输出电流极性变换过程中,加载在绝缘栅双极型晶体管(IGBT)上的瞬间脉冲功率损耗可能会使IGBT结温发生突变,可能超过最高结温允许值,进而影响其安全工作。该文利用热-电等效的局部网络模型,导出了在电源给定输出电流和再燃弧电压等参数条件下的IGBT最高结温计算公式,并将计算结果与仿真结果进行对比,证明了导出公式的正确性。分析了主要运行参数对IGBT最高结温的影响,获得了在选定IGBT型号时将其结温控制在安全范围的约束条件,为变极性焊接电源二次逆变电路设计时合理选择IGBT器件和优化运行参数提供了参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨中宇
朱志明
刘博
汤莹莹
关键词 绝缘栅双极型晶体管(IGBT)结温热-电等效模型变极性焊接电源    
Abstract:During commutation in a variable polarity welding power supply with a reverse voltage stabilizer, the instantaneous pulse power loss loaded on the insulated gate bipolar translator (IGBT) could cause a jump in the junction temperature that might exceed the maximum allowable junction temperature, threatening safe operation of the IGBT. Formulas were derived to calculate the highest junction temperature using a partial fraction circuit model in the thermal-electric equivalent method. The results were compared with simulation results to verify the formulas. The effects of the main parameters on the junction temperature were analyzed to develop constraint conditions for controlling the IGBT junction temperature in a safe range. These results provide a theoretical basis for choosing reasonable IGBT and its working parameters for the power supply circuits and control strategy.
Key wordsinsulated gate bipolar translator (IGBT)    junction temperature    thermal-electric equivalent model    variable polarity welding power supply
收稿日期: 2016-08-15      出版日期: 2017-05-15
ZTFLH:  TN492  
通讯作者: 朱志明,教授,E-mail:zzmdme@mail.tsinghua.edu.cn     E-mail: zzmdme@mail.tsinghua.edu.cn
引用本文:   
杨中宇, 朱志明, 刘博, 汤莹莹. 稳压式变极性焊接电源中的IGBT功率损耗和温升模型[J]. 清华大学学报(自然科学版), 2017, 57(5): 471-475,482.
YANG Zhongyu, ZHU Zhiming, LIU Bo, TANG Yingying. Power loss and temperature rise model for an IGBT in a variable polarity welding power supply with a reverse voltage stabilizer. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 471-475,482.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.023  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I5/471
  图1 稳压式变极性焊接电源拓扑
  图2 二次逆变驱动时序及输出和上桥臂IGBT电压电流波形
  图3 热电等效模型参数对比
  图4 局部网络与连续网络热电等效模型
  表1 IGBT功率器件热阻和热容(FF300R12KT4)
  图5 稳态时IGBT上的功率损耗波形及结温变化示意图
  图6 局部网络热电模型单个环节分析电路
  图7 结温计算分析流程
  图8 公式计算结果和模拟仿真结果的对比
  图9 P1P2t1G2对最高结温的影响
  图10 IGBT 安全结温下的临界参数范围
[1] 邹高域, 赵争鸣, 袁立强, 等. 双PWM变频器中的IGBT模块损耗 [J]. 清华大学学报 (自然科学版), 2013, 53(7): 1011-1018.ZOU Gaoyu, ZHAO Zhengming, YUAN Liqiang, et al. Losses in IGBT modules in dual-PWM converters [J]. J Tsinghua Univ (Sci and Tech), 2013, 53(7): 1011-1018. (in Chinese)
[2] 熊妍, 沈燕群, 江剑, 等. IGBT损耗计算和损耗模型研究[J]. 电源技术应用, 2006, 9(5): 55-60.XIONG Yan, SHEN Yanqun, JIANG Jian, et al. Study on loss calculation and model for IGBT [J]. Power Supply Technologies and Applications, 2006, 9(5): 55-60. (in Chinese)
[3] 许德伟, 朱东起, 黄立培, 等. 电力半导体器件和装置的功率损耗研究 [J]. 清华大学学报 (自然科学版), 2000, 40(3): 5-8.XU Dewei, ZHU Dongqi, HUANG Lipei, et al. Power loss analysis of power semiconductor devices and power converters [J]. J Tsinghua Univ (Sci and Tech), 2000, 40(3): 5-8. (in Chinese)
[4] LI Zhiming, DU Dong, WANG Li, et al. Study on the Control Strategy of Commutation Process in Variable Polarity Plasma Arc Welding [M]. Berlin: Springer, 2007: 163-170.
[5] 夏铸亮. 软开关变极性埋弧焊电源数字化控制及换流策略研究 [D]. 北京: 清华大学, 2012. XIA Zhuliang. Research on the Digital Control and Commutation Strategy of Soft-Switched Variable-Polarity SAW Power Supply [D]. Beijing: Tsinghua University, 2012. (in Chinese)
[6] 刘骥, 黄磊. 基于ANSYS软件的IGBT模块散热分析 [J]. 电力电子技术, 2013, 47(1): 107-108. LIU Ji, HUANG Lei. Thermal analysis of IGBT module based on the software of ANSYS [J]. Power Electronics, 2013, 47(1): 107-108. (in Chinese)
[7] 张健, 吕长志, 张小玲, 等. 基于ANSYS的IGBT热模拟与分析 [J]. 微电子学, 2011, 41(1): 139-142. ZHANG Jian, LÜ Changzhi, ZHANG Xiaoling, et al. Thermal simulation and analysis of IGBT based on ANSYS [J]. Microelectronics, 2011, 41(1): 139-142. (in Chinese)
[8] 宋飞, 梁哲兴, 张伟. IGBT器件稳态及瞬态热模型仿真分析[J]. 船电技术, 2013, 33(3): 10-13. SONG Fei, LIANG Zhexing, ZHANG Wei. Steady and transient thermal model simulation analysis of IGBT module [J]. Marine Electric & Electronic Engineering, 2013, 33(3): 10-13. (in Chinese)
[9] Musallam M, Johnson C M. Real-time compact thermal models for health management of power electronics [J]. IEEE Transactions on Power Electronics, 2010, 25(6): 1416-1425.
[10] Bryant A T, Mawby P A, Palmer P R, et al. Exploration of power device reliability using compact device models and fast electro-thermal simulation [C]//41st Industry Applications Conference. Tampa, FL, USA, 2006: 1465-1472.
[11] 秦星. 风电变流器IGBT模块结温计算及功率循环能力评估[D]. 重庆: 重庆大学, 2014. QIN Xing. Calculation of Junction Temperature and Assessment of Power Cycling Capabilities of IGBT Modules for Wind Power Converter [D]. Chongqing: Chongqing University, 2014. (in Chinese)
[12] Martin K, Welhelm R. FF300R12KT4 IGBT Datasheet 2.1 [Z/OL]. Munich: Infineon, 2008-01-25 [2016-05-09]. http://pdf1.alldatasheet.com/datasheet-pdf/view/416962/INFINEON/FF300R12KT4.html.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn