Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (5): 511-515    DOI: 10.16511/j.cnki.qhdxxb.2017.22.029
  热能工程 本期目录 | 过刊浏览 | 高级检索 |
基于大涡模拟的圆管脉动湍流减阻数值分析
宁涛, 顾春伟
清华大学 热能工程系, 热科学与动力工程教育部重点实验室, 北京 100084
Numerical analysis of the drag reduction for turbulent pulsating pipe flows based on large eddy simulations
NING Tao, GU Chunwei
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1438 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 该文利用商业软件ANSYS-CFX对圆管中的脉动湍流进行了大涡模拟,分析了脉动流的减阻特性和总能耗。文中的脉动流算例包括稳态流主控和振荡流主控两种流态。结果表明:脉动流通过叠加适合的振荡流来改变稳态流的边界层特性,脉动幅值为5.5时得到最佳减阻率为25%;当脉动流的流态由振荡流主控且振荡流分量的边界层为层流时,减阻效果较好;简单正弦形式脉动流的总能耗高于相应的稳态流。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宁涛
顾春伟
关键词 圆管脉动流湍流大涡模拟减阻能耗    
Abstract:Large eddy simulations were conducted for turbulent pulsating flows using the commercial solver ANSYS-CFX. The drag reduction and the total energy consumption for pulsating flows were analyzed. The simulations included current dominated and wave dominated pulsating flows. The boundary layer characteristics of the current flow were affected by the superposition of the wave flow. The best drag reduction in the pulsating flows gave a 25% drag reduction when the non-dimensional pulsating amplitude was 5.5. The analysis indicates that the drag reduction is optimized when the pulsating flow is wave dominated and the wave boundary layer is laminar. Pulsating flows with simple sinusoidal pulsating patterns consume much more energy than steady flows.
Key wordspulsating pipe flows    turbulence    large eddy simulation    drag reduction    energy consumption
收稿日期: 2016-03-23      出版日期: 2017-05-15
ZTFLH:  TK01  
通讯作者: 顾春伟,教授,E-mail:gcw@tsinghua.edu.cn     E-mail: gcw@tsinghua.edu.cn
引用本文:   
宁涛, 顾春伟. 基于大涡模拟的圆管脉动湍流减阻数值分析[J]. 清华大学学报(自然科学版), 2017, 57(5): 511-515.
NING Tao, GU Chunwei. Numerical analysis of the drag reduction for turbulent pulsating pipe flows based on large eddy simulations. Journal of Tsinghua University(Science and Technology), 2017, 57(5): 511-515.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.029  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I5/511
  表1 稳态流和脉动流算例的相关参数
  图1 计算网格示意
  表2 量纲为1的网格尺度和时间尺度
  图2 量纲为1的速度剖面
  图3 沿径向的湍动度对比
  表3 不同脉动流算例的参数和减阻率
  图4 不同相位的相平均速度剖面(α=5.5)
  图5 稳态流和脉动流的Reynolds应力
  图6 不同算例的速度剖面比较
  图7 大涡模拟得到的减阻率比较
  表4 不同算例的脉动总能耗比较
[1] Lodahl C R, Sumer B M, Fredsoe J. Turbulent combined oscillatory flow and current in a pipe [J]. Journal of Fluid Mechanics, 1998, 373: 313-348.
[2] MAO Zhuoxiong, Hanratty T J. Studies of the wall shear stress in a turbulent pulsating pipe flow [J]. Journal of Fluid Mechanics, 1986, 170: 545-564.
[3] Akhavan R, Kamm R D, Shapiro A H. An investigation of transition to turbulence in bounded oscillatory stokes flows, Part 1. Experiments [J]. Journal of Fluid Mechanics, 1991, 225: 395-422.
[4] Tu S W, Ramaprian B R. Fully developed periodic turbulent pipe flow: Part 1. Main experimental results and comparison with predictions [J]. Journal of Fluid Mechanics, 1983, 137: 31-58.
[5] Ramaprian B R, Tu S W. Fully developed periodic turbulent pipe flow: Part 2. The detailed structure of the flow [J]. Journal of Fluid Mechanics, 1983, 137: 59-81.
[6] He S, Jackson J D. An experimental study of pulsating turbulent flow in a pipe [J]. European Journal of Mechanics-B: Fluids, 2009, 28(2): 309-320.
[7] Tuzi R, Blondeaux P. Intermittent turbulence in a pulsating pipe flow [J]. Journal of Fluid Mechanics, 2008, 599: 51-79.
[8] Scotti A, Piomelli U. Numerical simulation of pulsating turbulent channel flow [J]. Physics of Fluids, 2001, 13(5): 1367-1384.
[9] Manna M, Vacca A. Resistance reduction in pulsating turbulent pipe flows [J]. Journal of Engineering for Gas Turbines and Power, 2005, 127: 410-417.
[10] Manna M, Vacca A. Spectral dynamic of pulsating turbulent pipe flow [J]. Computers & Fluids, 2008, 37(7): 825-835.
[11] Tardu S F, Binder G, Blackwelder R F. Turbulent channel flow with large-amplitude velocity oscillations [J]. Journal of Fluid Mechanics, 1994, 267: 109-151.
[12] Eggels, J G M, Unger F, Weiss M H, et al. Fully developed turbulent pipe flow: A comparison between direct numerical simulation and experiment [J]. Journal of Fluid Mechanics, 1994, 268: 175-210.
[13] Souma A, Iwamoto K, Murata A. Experimental analysis of pressure-gradient profile upon drag-reduction effect in pulsating turbulent pipe flow [J]. Transactions of the Japan Society of Mechanical Engineers Series B, 2012, 78(787): 521-530.
[1] 曹军文, 覃祥富, 胡轶坤, 张文强, 于波, 张佑杰. 高温气冷堆耦合高温电解规模化制氢系统仿真[J]. 清华大学学报(自然科学版), 2023, 63(8): 1246-1256.
[2] 安健, 陈宇轩, 苏星宇, 周华, 任祝寅. 机器学习在湍流燃烧及发动机中的应用与展望[J]. 清华大学学报(自然科学版), 2023, 63(4): 462-472.
[3] 周明烁, 丁思宇, 王兴建. 跨/超临界流体大涡模拟状态方程亚格子模型综述[J]. 清华大学学报(自然科学版), 2023, 63(4): 473-486.
[4] 孙逸凡, 朱炜, 吴玉新, 祁海鹰. Gao-Yong湍流模型对边界层转捩的适用性研究[J]. 清华大学学报(自然科学版), 2023, 63(4): 642-648.
[5] 李丹, 吕海陆, 张扬, 张海, 周托, 吕俊复. 来流预混均匀性对湍流射流火焰回火特性的影响[J]. 清华大学学报(自然科学版), 2023, 63(4): 560-571.
[6] 莫毅, 陈璠, 许笑颜, 焦哲, 卫刚, 林宏军, 肖为, 王方, 任祝寅. 航空发动机燃烧室两相湍流燃烧建模与仿真[J]. 清华大学学报(自然科学版), 2023, 63(4): 670-680.
[7] 王东璞, 王子奇, 刘爽, 蒋林峰, 易磊, 孙超. 复杂边界和极端条件对单相和多相湍流结构和输运的影响[J]. 清华大学学报(自然科学版), 2022, 62(4): 758-773.
[8] 何鑫, 薛瑞, 郑星, 张骞, 龚建良. 边界层燃烧在超燃冲压发动机内的摩擦减阻特性[J]. 清华大学学报(自然科学版), 2022, 62(3): 562-572.
[9] 胡振中, 袁爽. 建筑能耗与环境监测系统标准化数据提取技术[J]. 清华大学学报(自然科学版), 2020, 60(4): 357-364.
[10] 陈浩, 袁良信, 郑四发, 连小珉. 基于能耗优化的电动轮汽车转矩动态分配[J]. 清华大学学报(自然科学版), 2020, 60(2): 132-138.
[11] 钟强, 郑枫川, 杨宇晨, 邓兆宇. 明渠湍流对数律的诊断函数分析[J]. 清华大学学报(自然科学版), 2019, 59(12): 999-1005.
[12] 陈文创, 张蕊, 张文远, 章晋雄, 张东. 复杂非对称岔管数值模拟中湍流模型的影响[J]. 清华大学学报(自然科学版), 2018, 58(8): 752-760.
[13] 刘桂莲, 王颖佳. 考虑提纯能耗的氢网络提纯优化[J]. 清华大学学报(自然科学版), 2016, 56(7): 717-722.
[14] 吴韶华,张健. 湍流预混射流火焰直接模拟中入口条件的确定[J]. 清华大学学报(自然科学版), 2014, 54(6): 834-838.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn