Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (7): 774-779    DOI: 10.16511/j.cnki.qhdxxb.2017.25.036
  航空航天与工程力学 本期目录 | 过刊浏览 | 高级检索 |
不同组分对航空煤油物性替代模型的影响
裴鑫岩, 侯凌云
清华大学 航天航空学院, 北京 100084
Effect of different species on physical properties for the surrogate of aviation fuel
PEI Xinyan, HOU Lingyun
School of Aerospace Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1535 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 该文旨在建立航空煤油RP-3的热物性替代模型,为换热计算与实验奠定基础。首先,通过对比已有研究中的8种航空煤油替代模型,分析各模型对比热的计算结果的影响,选择了具有代表性的直链烷烃、 环烷烃和苯类物质3类组分进行分析。其次,研究各类组分对热物性参数的影响,结果表明组分的影响主要表现在拟临界点温度处对应物性值的预测上。最后,基于理论分析比较提出了4组分物性替代模型,经实验验证,在不同压力下的比热容、 密度、 黏度3个物性计算结果与实验值符合良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
裴鑫岩
侯凌云
关键词 碳氢燃料RP-3物性替代模型超临界特性    
Abstract:Thermo-physical properties for surrogate aviation kerosene RP-3 were developed in this study to lay a foundation of the further investigation of the heat transfer calculation and experiment. The specific heat calculated from different surrogate models of the RP-3 was compared with the experimental data. The effects of three kinds of species, i.e. paraffin, cycloalkanes, benzenes, on thermo-physical properties were analyzed. There are the big differences of thermal properties at pseudo-critical temperatures. Based on the previous research of surrogate models and the GC-MS analysis of RP-3, a four-species surrogate was proposed. The numerical results for thermo-physical properties were in good agreement with the experimental data, including the specific heat, density and viscosity.
Key wordshydrocarbon fuel    RP-3    surrogate model    supercritical condition
收稿日期: 2015-12-01      出版日期: 2017-07-15
ZTFLH:  V312+.1  
通讯作者: 侯凌云,副教授,E-mail:lyhou@tsinghua.edu.cn     E-mail: lyhou@tsinghua.edu.cn
引用本文:   
裴鑫岩, 侯凌云. 不同组分对航空煤油物性替代模型的影响[J]. 清华大学学报(自然科学版), 2017, 57(7): 774-779.
PEI Xinyan, HOU Lingyun. Effect of different species on physical properties for the surrogate of aviation fuel. Journal of Tsinghua University(Science and Technology), 2017, 57(7): 774-779.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.25.036  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I7/774
  图1 RPG3色谱质谱分析结果图谱
  表1 航空煤油RPG3特性
  表2 研究测得RPG3成分(质量百分比)
  表3 不同替代模型组分
  图2 3MPa下不同替代模型比热容结果[11]
  表4 4组分物性替代模型
  图3 在3MPa压力下不同组分的物性结果
  图4 不同压力下替代模型与实验物性对比
[1] 朱锟, 邓宏武, 王英杰, 等. 超临界压力下航空煤油结焦换热综述及实验 [J]. 航空动力学报, 2010, 25(11):2472-2478.ZHU Kun, DENG Hongwu, WANG Yingjie, et al. Review and experimental study of the coke deposition and heat transfer characteristics of aviation kerosene at supercritical pressure [J]. Journal of Aerospace Power, 2010, 25(11):2472-2478. (in Chinese)
[2] 范学军, 俞刚. 大庆RP-3航空煤油热物性分析 [J]. 推进技术, 2006, 27(2):187-192.FAN Xuejun, YU Gang. Analysis of thermophysical properties of Daqing RP-3 aviation kerosene [J]. Journal of Propulsion Technology, 2006, 27(2):187-192. (in Chinese)
[3] FAN Xuejun, ZHONG Fengquan, YU Gong. Catalytic cracking of China No. 3 aviation kerosene under supercritical conditions [C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Hartford, CT, USA:American Institute of Aeronautics and Astronautics, 2008.
[4] 程迪, 王新竹, 范学军. RP-3煤油热物性替代模型研究 [C]//高超声速专题研讨会暨第五届全国高超声速科学技术会议. 桂林:中国力学学会, 2012.CHENG Di, WANG Xinzhu, FAN Xuejun. Thermophysical surrogate modeling of RP-3 aviation kerosene [C]//5th Hypersonic Technology Conferences. Guilin, China:Chinese Society of Theoretical and Applied Mechanics, 2012. (in Chinese)
[5] ZHONG Fengquan, FAN Xuejun, YU Gong, et al. Heat transfer of aviation kerosene at supercritical conditions [C]//44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Hartford, CT, USA:American Institute of Aeronautics and Astronautics, 2008.
[6] ZHANG Ruoling, JIANG Jin, LE Jia. The simulation of endothermic fuel flow in cooling channels of scramjet [C]//International Conference on Methods of Aerophysical Research, ICMAR. Akademgorodok, Novosibirsk, Russia:ICMAR, 2008.
[7] 郑东, 于维铭, 钟北京. RP-3航空煤油替代燃料及其化学反应动力学模型 [J]. 物理化学学报, 2015, 31(4):636-642.ZHENG Dong, YU Weiming, ZHONG Beijing. RP-3 aviation kerosene surrogate fuel and the chemical reaction kinetic model [J]. Acta Phys Chim Sin, 2015, 31(4):636-642. (in Chinese)
[8] JIANG Rongpei, LIU Guozhu, ZHANG Xiangwen. Thermal cracking of hydrocarbon aviation fuels in regenerative cooling microchannels [J]. Energy & Fuels, 2013, 27(5):2563-2577.
[9] Huber M L, Smith B L, Ott L S, et al. Surrogate mixture model for the thermophysical properties of synthetic aviation fuel S-8:Explicit application of the advanced distillation curve [J]. Energy & Fuels, 2008, 22(2):1104-1114.
[10] NIST Standard Reference Database 4. NIST Thermophysical Properties of Hydrocarbon Mixtures Database (SUPERTRAPP) [S]. Gaithersburg, MD, USA:National Inst. of Standards, 1999.
[11] DENG Hongwu, ZHU Kun, XU Guoqiang, et al. Isobaric specific heat capacity measurement for kerosene RP-3 in the near-critical and supercritical regions [J]. Journal of Chemical & Engineering Data, 2012, 57(2):263-268.
[12] Roan M A, Boehman A L. The effect of fuel composition and dissolved oxygen on deposit formation from potential JP-900 basestocks [J]. Energy & Fuels, 2004, 18(3):835-843.
[13] DENG Hongwu, ZHANG Chunben, XU Guoqiang, et al. Density measurements of endothermic hydrocarbon fuel at sub- and supercritical conditions [J]. Journal of Chemical & Engineering Data, 2011, 56(6):2980-2986.
[14] DENG Hongwu, ZHANG Chunben, XU Guoqiang, et al. Viscosity measurements of endothermic hydrocarbon fuel from 298 to 788 K under supercritical pressure conditions [J]. Journal of Chemical And Engineering Data, 2012, 57(2):358-365.
[1] 吴悠, 杨明, 杨斌. 航空煤油反应动力学模型的发展现状和挑战[J]. 清华大学学报(自然科学版), 2023, 63(4): 521-545.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn