Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (8): 798-802    DOI: 10.16511/j.cnki.qhdxxb.2017.22.040
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于有限元方法的光刻机工件台线管组件结构优化
成荣, 王希远, 朱煜, 杨开明
清华大学 机械工程系, 北京 100084
Structural optimization of the cable-pipe assembly for a lithography stage based on the finite element method
CHENG Rong, WANG Xiyuan, ZHU Yu, YANG Kaiming
Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(2469 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 光刻机工件台是光刻机的关键子系统,其中的线管组件是其传输信号、动力及冷却液等必不可少的组成部分。线管组件产生的扰动力会恶化工件台系统的超精密运动性能,因此抑制线管组件扰动力对提高工件台系统的运动性能具有重要意义。该文以工件台系统的子系统掩模台系统的线管组件为例,以减小线管组件扰动力波动、提高掩模台运动性能为目的,建立了线管组件有限元模型,对线管组件的主要结构参数进行了优化,提出了线管组件优化的一些准则,并进行了实验验证。实验表明:该有限元模型与实验相比的一阶频率误差在10%以内,验证了模型的准确性。仿真实验结果表明:优化后的线管组件L向扰动力波动幅值减小80%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
成荣
王希远
朱煜
杨开明
关键词 工件台线管组件扰动力结构优化    
Abstract:The stage is the key subsystem in a lithography machine. The cable-pipe assembly transmits the motor coil signal, power and coolant in stage systems. However, disturbances generated by the cable-pipe assembly reduce the ultra-precision of the stage. Therefore, the disturbances need to be reduced to improve the stage positioning accuracy. The cable-pipe assembly and its disturbance characteristics are analyzed to develop a simplified finite element model of the cable-pipe system. Then, the main structural parameters of the assembly are optimized with design guidelines for future cable-pipe assembly designs. Tests show that the finite element model is accurate with a first order frequency error of less than 10%. Simulations show that the disturbance amplitude of the L-direction is reduced by 80% relative to that without optimization.
Key wordsstage system    cable-pipe assembly    disturbance    structural optimization
收稿日期: 2016-01-06      出版日期: 2017-08-15
ZTFLH:  TH122  
引用本文:   
成荣, 王希远, 朱煜, 杨开明. 基于有限元方法的光刻机工件台线管组件结构优化[J]. 清华大学学报(自然科学版), 2017, 57(8): 798-802.
CHENG Rong, WANG Xiyuan, ZHU Yu, YANG Kaiming. Structural optimization of the cable-pipe assembly for a lithography stage based on the finite element method. Journal of Tsinghua University(Science and Technology), 2017, 57(8): 798-802.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.22.040  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I8/798
  图1 掩模台线管组件
  图2 掩模台线管组件示意图
  图3 掩模台线管组件的分析坐标系
  图4 线管组件简化模型的参数示意
  表1 线管组件模型参数说明
  图5 初始有限元模型
  图6 有应力弯曲模型
  表2 模态测试实验结果与有限元仿真结果的对比
  表3 掩模台线管组件结构参数说明
  图7 掩模台线管组件可优化的结构参数示意
  图8 FR 与l、h 和d 关系曲线1
  表4 掩模台线管组件优化参数
  图9 FR 与l、h 和d 关系曲线2
  图10 FR 与l、h 和d 关系曲线3
  图11 优化前后L 向扰动力对比
[1] 朱煜. 超精密气浮运动工作台关键技术研究[R]. 北京:清华大学, 2003.ZHU Yu. Research on the Key Technology of Ultra-Precision Air Floatation Stage[R]. Beijing:Tsinghua University, 2003. (in Chinese)
[2] 汪劲松. 我国"十五"期间IC制造装备的发展战略研究[J]. 机器人技术与应用, 2002(2):5-9. WANG Jinsong. Study on the development strategy of IC manufacturing equipment in the period of the Tenth Five-Year Plan[J]. Robot Technique and Application, 2002(2):5-9. (in Chinese)
[3] Liu D, Cheng Z, Gao H, et al. Process of wafer stage and teticle stage for step and scan lithography system[J]. Laser & Optoelectronics Progress, 2003, 40(5):14-20.
[4] Butler H. Position control in lithographic equipment:An enabler for current-day chip manufacturing[J]. IEEE Control Systems Magazine, 2011, 31(5):28-47.
[5] 李春明. 优化方法[M]. 南京:东南大学出版社, 2009. LI Chunming. Optimization Method[M]. Nanjing:Southeast University Press, 2009. (in Chinese)
[6] Zhou J, Huang R, Kim G T. Characteristics analysis and optimization of a novel synchronous permanent magnet planar motor[C]//Biennial IEEE Conference on Electromagnetic Field Computation. Miami, FL, USA, 2006:11-15.
[7] Gilardi G, Szeto K, Huard S, et al. Finite element analysis of the cogging force in the linear synchronous motor array for the Thirty Meter Telescope[J]. Mechatronics, 2011, 21(1):116-124.
[8] Akmese R, Eastham J A. Design of permanent magnet flat linear motors for standstill applications[J]. IEEE Transactions on Magnetics, 1992, 28(5):3042-3044.
[9] 张鸣. 超精密气浮运动台流固耦合模态分析及优化设计[D]. 北京:清华大学, 2005. ZHANG Ming. Modal Analysis and Optimization Design for Ultra Precision Linear Motion Gas Bearing Stage Using a Fluent-Structure Coupled Method[D]. Beijing:Tsinghua University, 2005. (in Chinese)
[10] Xia B, Yuan C, Tian Y, et al. Disturbance estimation and compensation for planar motors on the long-stroke stage of a wafer stage[J]. Advances in Mechanical Engineering, 2015, 7(4):1-10.
[11] ANSYS. Elements Reference ANSYS Release 11.0[M]. Canonsburg, PA, USA:ANSYS, 2007.
[12] 张力. 模态分析与实验[M]. 北京:清华大学出版社, 2011. ZHANG Li. Modal Analysis and Experiment[M]. Beijing:Tsinghua University Press, 2011. (in Chinese)
[1] 张继文, 刘莉, 陈恳. 小型仿人足球机器人MOS-7的系统设计及局部优化[J]. 清华大学学报(自然科学版), 2016, 56(8): 811-817.
[2] 钟薇, 苏瑞意, 桂良进, 范子杰. 基于子结构方法的离散结构协同优化[J]. 清华大学学报(自然科学版), 2016, 56(6): 572-579.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn