Parallel incremental dynamic community detection algorithm based on Spark
WU Bin1,2, XIAO Yan1,2, ZHANG Yunlei1,2
1. Beijing Key Laboratory of Intelligent Telecommunications Software and Multimedia, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2. School of Computer Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
摘要动态社团发现是研究网络演化的关键步骤。在数据量迅猛增长的情况下,社团发现的单机算法效率较低。该文提出了一种基于Spark的并行增量动态社团发现算法(parallel incremental dynamic community detection algorithm based on Spark,PIDCDS),为了在GraphX并行图计算平台上通过最大化持久力发现社团,该算法对节点的持久力计算公式进行了有效修正。PIDCDS计算每个时间片中增量节点的持久力指标,更新其社团归属,在保证一定的社团划分准确性的基础上减少计算量。通过与FacetNet动态社团发现算法做比较,该算法能够获得更好的稳定性,同时能发现更真实的社团划分。对比不同规模网络在PIDCDS上的运行时间,发现该时间随着网络节点和边数的增加缓慢增长,性能较高,并且增加执行器核数将在一定程度上加速算法的执行。
Abstract:Dynamic community detection is a crucial step in researching network evolution. Nonparallel algorithms cannot efficiently mine community structures with large amounts of data. This paper presents a parallel incremental dynamic community detection algorithm based on Spark (PIDCDS), which maximizes the total permanence of the vertices in the network to discover the community structure. PIDCDS uses parallel computations on GraphX to calculate a specialized permanence as the community partition metric. Only the permanence of the incremental vertices is computed in each step to derive a new community structure. This algorithm is accurate with less computations. PIDCDS has better stability and more accurately detects the community structure than the FacetNet algorithm. PIDCDS performs well and the execution time increases only slowly as the network scale increases. More cores will accelerate PIDCDS to some extent.
李国杰. 网络科学:21世纪的元科学[J]. 中国计算机学会通讯, 2016,12(4):7. LI Guojie.Network science:The meta science in the 21st century[J]. Communications of the China Computer Federation, 2016,12(4):7. (in Chinese)
[2]
Fortunato S. Community detection in graphs[J].Physics Reports, 2010,486(3):75-174.
[3]
Girvan M, Newman M E J. Community structure in social and biological networks[J].Proceedings of the National Academy of Sciences, 2002,99(12):7821-7826.
[4]
Newman M E J. Modularity and community structure in networks[J].Proceedings of the National Academy of Sciences, 2006,103(23):8577-8582.
[5]
汪小帆, 李翔, 陈关荣. 网络科学导论[M]. 北京:高等教育出版社, 2012. WANG Xiaofan, LI Xiang, CHEN Guanrong. Network Science:An Introduction[M]. Beijing:Higher Education Press, 2012. (in Chinese)
[6]
Chakraborty T, Srinivasan S, Ganguly N, et al. On the permanence of vertices in network communities[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY, USA:ACM, 2014:1396-1405.
[7]
Ning H, Xu W, Chi Y, et al. Incremental spectral clustering by efficiently updating the eigen-system[J].Pattern Recognition,2010,43(1):113-127.
[8]
Zaharia M, Chowdhury M, Das T, et al. Resilient distributed datasets:A fault-tolerant abstraction for in-memory cluster computing[C]//Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation. Berkeley, CA,USA:USENIX Association, 2012:141-146.
Xin R S, Gonzalez J E, Franklin M J, et al. GraphX:A resilient distributed graph system on spark[C]//Proceedingsof the 1st Int Workshop on Graph Data Management Experiences and Systems. New York, NY, USA:ACM, 2013.
[11]
Lu H, Halappanavar M, Kalyanaraman A. Parallel heuristics for scalable community detection[J].Parallel Computing, 2015,47:19-37.
[12]
Staudt C L, Meyerhenke H. Engineering parallel algorithms for community detection in massive networks[J].IEEE Transactions on Parallel and Distributed Systems, 2016,27(1):171-184.
[13]
Danon L, Diaz-Guilera A, Duch J, et al. Comparing communitystructure identification[J].Journal of Statistical Mechanics:Theory and Experiment, 2005(9), P09008.
[14]
Lancichinetti A, Fortunato S, Radicchi F. Benchmark graphs for testing community detection algorithms[J].Physical Review E, 2008,78(4), 046110.
[15]
LI Xiaoming, WU Bin, GUO Qian, et al. Dynamic community detection algorithm based on incremental identification[C]//2015 IEEE International Conference on Data Mining Workshop (ICDMW). Atlantic City, NJ, USA:IEEE, 2015.
[16]
Lin Y R, Chi Y, Zhu S, et al. Facetnet:A framework for analyzing communities and their evolutions in dynamic networks[C]//Proceedings of the 17th international conference on World Wide Web. New York, NY, USA:ACM, 2008:685-694.