Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2017, Vol. 57 Issue (11): 1185-1189    DOI: 10.16511/j.cnki.qhdxxb.2017.26.062
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于次摆线轨迹的铣削层厚度模型
关立文1, 赵肖2, 王立平1
1. 清华大学 机械工程系, 北京 100084;
2. 电子科技大学 机械电子工程学院, 成都 611731
Milling-layer thickness model based on a trochoid trajectory
GUAN Liwen1, Zhao Xiao2, WANG Liping1
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. School of Mechatronics Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
全文: PDF(1358 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 铣削层厚度模型很大程度上影响着铣削加工瞬时铣削力计算精度,在每齿进给量较小情况下能较好地反映铣削层厚度的瞬时变化,但在每齿进给量较大情况下铣削层厚度计算精度不足。该文分析铣削刃随刀具旋转和工件进给的运动规律,建立铣削刀具次摆线轨迹模型,给出铣削起始角和终止角,提出一种基于次摆线轨迹的铣削层厚度模型。通过与现有圆弧模型和等效均匀厚度模型对比,结果表明:该模型在不同每齿进给量下均能保证较高准确性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关立文
赵肖
王立平
关键词 铣削层厚度模型次摆线刀具轨迹    
Abstract:The milling-layer thickness model greatly affects the prediction accuracy of instantaneous milling forces. Current milling layer thickness models can accurately predict the instantaneous change in the milling layer thickness foe small feed rates per tooth, but are less accurate with large feed rates per tooth. The study analyzes the milling blade movement pattern as the tool rotates and the work-piece feeds in to the tool. The model predicts the trochoid trajectory and the milling start and end angles. The milling-layer thickness model is then based on the trochoid trajectory. Trochoid trajectory model is more accurate for both large and small feed rates per tooth than the circle model and the equivalent uniform thickness model.
Key wordsmilling-layer thickness model    trochoid    tool trajectory
收稿日期: 2016-12-23      出版日期: 2017-11-15
ZTFLH:  TH161.1  
引用本文:   
关立文, 赵肖, 王立平. 基于次摆线轨迹的铣削层厚度模型[J]. 清华大学学报(自然科学版), 2017, 57(11): 1185-1189.
GUAN Liwen, Zhao Xiao, WANG Liping. Milling-layer thickness model based on a trochoid trajectory. Journal of Tsinghua University(Science and Technology), 2017, 57(11): 1185-1189.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2017.26.062  或          http://jst.tsinghuajournals.com/CN/Y2017/V57/I11/1185
  图1 摆线、次摆线和内摆线轨迹的成形原理[6]
  图2 铣刀某一铣削刃刀尖点轨迹
  图3 铣削加工相邻铣削刃轨迹
  图4 铣削起始角和铣削终止角
  图5 δθ 随n 和fz 变化情况
  图6 铣削层厚度模型
  图7 不同fz 和r 下铣削层厚度变化
  图8 不同每齿进给量fz 下3种铣削层厚度模型比较
  图9 不同每齿进给量下3种模型铣削层厚度误差比较
  图10 不同每齿进给量下3种模型 铣削层厚度误差率分布
  图11 等效均匀模型及圆弧模型与次摆线模型比较
[1] 宋玉梅. 基于数控铣床的物理仿真[D]. 长春:吉林大学, 2005. SONG Yumei. Physical Simulation Based on NC Milling Machine[D]. Changchun:Jilin University, 2005. (in Chinese)
[2] Martellotti M E. An analysis of the milling process[J]. Transactions of ASME, 1941, 63(8):677-700.
[3] Martellotti M E. An analysis of the milling process. Part 2:Down milling[J]. Transactions of ASME, 1945, 67:233-251.
[4] 臼井英治. 铣削磨削加工学[M]. 高希正, 刘德忠, 译. 北京:机械工业出版社, 1982.USUI Eiji. Milling and Grinding[M]. GAO Xizheng, LIU Dezhong, trans. Beijing:China Machine Press, 1982. (in Chinese)
[5] Özel T, Altan T. Process simulation using finite element method-prediction of cutting forces, tool stress and temperatures in high speed flat end milling[J]. International Journal of Machine Tools and Manufacture, 2000, 40(5):713-738.
[6] 袁平. 采用多刃铣刀的航空铝合金高速加工过程的数值模拟与实验研究[D]. 杭州:浙江大学, 2008.YUAN Ping. The Numerical Simulation and Experimental Study on the High Speed Milling Process for Aerospace Aluminum Alloy with Multi-flutes Milling Cutter[D]. Hang Zhou:Zhejiang University, 2008. (in Chinese)
[7] Kaczmarek J. Principles of Machining by Cutting, Abrasion and Erosion[M]. Stevenage:Peter Peregrinus Limited, 1976.
[8] Montgoemry D, Altintas Y. Mechanism of cutting force and surface generation in dynamic milling[J]. ASME Journal of Engineering for Industry, 1991, 113(2):160-168.
[9] Depince P, Hascoet J Y. Active integration of tool deformation effects in end milling. Part I:Prediction of milled surface[J]. International Journal of Machine Tools and Manufacture, 2006, 46(9):937-944.
[10] Depince P, Hascoet J Y. Active integration of tool deformation effects in end milling. Part Ⅱ:Prediction of milled surface[J]. International Journal of Machine Tools and Manufacture, 2006, 46(9):945-956.
[11] Spiewak S. An improved model of the chip thickness in milling[J]. CIRP Annuals-Manufacturing Technology, 1995, 44(1):39-42.
[12] Li H Z, Liu K, Li X R. A new method for determining the undeformed chip thickness in milling[J]. Materials Processing Technology, 2001, 113:378-384.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn