Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (1): 108-112    DOI: 10.16511/j.cnki.qhdxxb.2018.22.014
  经济与管理 本期目录 | 过刊浏览 | 高级检索 |
向下修正条款对中国可转债定价的影响
王茵田, 文志瑛
清华大学 经济管理学院, 北京 100084
Influence of the downward revision clause on Chinese convertible bond pricing
WANG Yintian, MOON Jiyoung
School of Economics and Management, Tsinghua University, Beijing 100084, China
全文: PDF(931 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 中国可转债市场价格普遍高于模型价格,市场存在"可转债溢价"。该文认为向下修正条款可以提高模型定价准确度并减缓溢价现象。该研究采用Tsiveriotis和Fernandes的可转债定价模型,严格引入了向下修正条款以及赎回条款、回售条款、转股条款,分析了向下修正条款对可转债定价的影响。结果表明:引入向下修正条款后,模型定价误差显著下降,减缓了"可转债溢价"现象。研究分析定价影响因素发现:具有较高的转股比率、价值状态和牛市股票波动率的可转债定价准确度较高,到期剩余时间和牛市虚拟变量可以通过影响可转债市场溢价,影响定价误差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王茵田
文志瑛
关键词 可转债定价向下修正条款影响因素    
Abstract:Chinese convertible bond market prices are higher than model prices, indicating "market premiums" in the market. The paper shows that the downward revision clause may increase the accuracy of model prices and reduce the "market premium". The Tsiveriotis and Fernandes pricing model is used with trigger conditions for the downward revision, call, put and conversion clauses. The downward revision clause reduces the "market premium". High conversion ratio, moneyness and stock volatility in a bull market increase the option value of convertible bonds and reduce the pricing error. Years-to-maturity and market timing are related with the market premiums and affect the pricing error.
Key wordsconvertible bond pricing    downward revision clause    influential factor
收稿日期: 2017-07-31      出版日期: 2018-01-15
ZTFLH:  F832.5  
引用本文:   
王茵田, 文志瑛. 向下修正条款对中国可转债定价的影响[J]. 清华大学学报(自然科学版), 2018, 58(1): 108-112.
WANG Yintian, MOON Jiyoung. Influence of the downward revision clause on Chinese convertible bond pricing. Journal of Tsinghua University(Science and Technology), 2018, 58(1): 108-112.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.014  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I1/108
  表1 模型变量统计描述
  表2 模型定价误差(MD)的t检验结果
  表3 面板回归结果
[1] INGERSOLL J. A contingent-claims valuation of convertible securities[J]. Journal of Financial Economics, 1977, 4(3):289-321.
[2] INGERSOLL J. An examination of corporate call policies on convertible securities[J]. The Journal of Finance, 1977, 32(2):463-478.
[3] BRENNAN M, SCHWARTZ E. Convertible bonds:Valuation and optimal strategies for call and conversion[J]. The Journal of Finance, 1977, 32(5):1699-1715.
[4] BRENNAN M, SCHWARTZ E. Analyzing convertible bonds[J]. Journal of Financial and Quantitative Analysis, 1980, 15(4):907-929.
[5] MCCONNELl J, SCHWARTZ E. LYON taming[J]. The Journal of Finance, 1986, 41(3):561-576.
[6] TSIVERIOTIS K, FERNANDES C. Valuing convertible bonds with credit risk[J]. The Journal of Fixed Income, 1998, 8(2):95-102.
[7] Takahashi A, Kobayashi T, Nakagawa N. Pricing convertible bonds with default risk[J]. The Journal of Fixed Income, 2001, 11(3):20-29.
[8] AYACHE E, FORSYTH P, VETZAL K. Valuation of convertible bonds with credit risk[J]. The Journal of Derivatives, 2003, 11(1):9-29.
[9] HUNG M, WANG J. Pricing convertible bonds subject to default risk[J]. The Journal of Derivatives, 2002, 10(2):75-87.
[10] CHAMBERS R, LU Q. A tree model for pricing convertible bonds with equity, interest rate, and default risk[J]. The Journal of Derivatives, 2007, 14(4):25-46.
[11] FAN C, LUO X, WU Q. Stochastic volatility vs. jump diffusions:Evidence from the Chinese convertible bond market[J]. International Review of Economics and Finance, 2017, 49:1-16.
[12] 范辛亭, 方兆本. 随机利率条件下可转换债券定价模型的经验检验[J]. 中国管理科学, 2001, 9(6):7-14.FAN X T, FANG Z B. Empirical test on convertible bond pricing model under stochastic interest rate[J]. Chinese Journal of Management Science, 2001, 9(6):7-14. (in Chinese)
[13] 李念夷, 陈懿冰. 基于违约风险的三叉树模型在可转债定价中的应用研究[J]. 管理评论, 2011, 23(12):26-31.LI N Y, CHEN Y B. Trinomial tree with default risk and its application to pricing convertible bonds[J]. Management Review, 2011, 23(12):26-31. (in Chinese)
[14] 刘善存, 宋殿宇, 金华. 分数布朗运动下带违约风险的可转换债券定价[J]. 中国管理科学, 2011, 19(6):25-30.LIU S C, SONG D Y, JIN H. Pricing convertible bonds with default risk in the fractional Brownian environment[J]. Chinese Journal of Management Science, 2011, 19(6):25-30. (in Chinese)
[15] 乔高秀, 潘席龙. 跳扩散模型下考虑不同违约回收率的可转债定价[J]. 系统工程, 2013, 31(3):1-7.QIAO G X, PAN X L. The pricing of convertible bonds under jump-diffusion model with different defaultable recovery rates[J]. System Entineering, 2013, 31(3):1-7. (in Chinese)
[16] 赖其男, 姚长辉, 王志诚. 关于我国可转换债券定价的实证研究[J]. 金融研究, 2005, 303(9):105-121 LAI Q N, YAO C H, WANG Z C. Empirical analysis of Chinese convertible bond pricing[J]. Journal of Financial Research, 2005, 303(9):105-121. (in Chinese)
[17] 杨立洪, 蓝雁书, 曹显兵. 一般Levy过程下带违约风险的可转换债券定价模型[J]. 系统工程理论与实践, 2010, 30(12):2184-2189.YANG L H, LAN Y S, CAO X B. Pricing model of convertible bonds with default risk in a generic Levy process[J]. Systems Engineering:Theory and Practice, 2010, 30(12):2184-2189. (in Chinese)
[18] 刘大巍, 陈启宏, 张翀. 关于我国可转债定价修正模型的实证研究[J]. 管理工程学报, 2011, 25(1):184-191.LIU D W, CHEN Q H, ZHANG C. Empirical research of modified valuation model in Chinese convertible bond market[J]. Journal of Industrial Engineering and Engineering Management, 2011, 25(1):184-191. (in Chinese)
[1] 王春艳, 张景翔, 龙洁, 刘毅. 基于面板数据回归模型的家庭水-能消费时空特征与影响因素[J]. 清华大学学报(自然科学版), 2022, 62(3): 614-626.
[2] 郭飞, 程甘霖, 张兆想, 黄兴, 贾晓红. 聚合物软材料磨损硬质材料机理研究进展[J]. 清华大学学报(自然科学版), 2021, 61(6): 643-652.
[3] 王守清, 牛耘诗, 伍迪, 褚晓凌. PPP项目控制权配置影响因素及合理配置原则[J]. 清华大学学报(自然科学版), 2019, 59(8): 663-669.
[4] 湛社霞, 匡耀求, 阮柱. 基于灰色关联度的粤港澳大湾区空气质量影响因素分析[J]. 清华大学学报(自然科学版), 2018, 58(8): 761-767.
[5] 李华, 赵原, 刘立业, 肖运实, 李君利. 介质尺寸对水中γ射线吸收剂量累积因子的影响[J]. 清华大学学报(自然科学版), 2017, 57(5): 525-529.
[6] 邓青, 马晔风, 刘艺, 张辉. 基于BP神经网络的微博转发量的预测[J]. 清华大学学报(自然科学版), 2015, 55(12): 1342-1347.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn