Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (6): 547-552    DOI: 10.16511/j.cnki.qhdxxb.2018.26.025
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
基于色彩分割及信息熵加权特征匹配的刹车片图像分类算法
赵磊1, 张文1, 孙振国1,2, 陈强1,2
1. 清华大学 机械工程系, 先进成形制造教育部重点实验室, 北京 100084;
2. 浙江清华长三角研究院, 嘉兴 314006
Brake pad image classification algorithm basedon color segmentation and information entropy weighted feature matching
ZHAO Lei1, ZHANG Wen1, SUN Zhenguo1,2, CHEN Qiang1,2
1. Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314006, China
全文: PDF(2868 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 在基于机器视觉的汽车刹车片外观检测中,刹车片图像前景分割及形状特征的提取和匹配算法是刹车片分类的关键。为实现汽车刹车片外观高精度检测分类,该文提出并实现了一种包括前景分割、几何特征提取及特征模板匹配的图像处理算法。该算法首先将工业相机拍摄得到的红、绿、蓝(red green blue,RGB)格式图像转换到色调、饱和度、明度(hue saturation value,HSV)色彩空间,利用其中的饱和度S通道从暗色传送带背景中分割刹车片;然后提取刹车片区域的多维几何特征进行特征融合;最后采用基于信息熵加权的改进特征匹配算法,通过刹车片特征的信息熵对特征空间的Manhattan距离进行加权。对98张、54类刹车片图像进行了分类实验,结果表明:算法准确率为95.00%,每张平均耗时110 ms,可以应用于刹车片生产过程中的实时自动分类。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵磊
张文
孙振国
陈强
关键词 刹车片机器视觉色调、饱和度、明度(hue saturation value, HSV)色彩空间几何特征信息熵    
Abstract:In appearance inspection of car brake pads based on machine vision, the segmentation of the brake pad image and the extraction and matching of the shape features are keys of brake pads classification. In order to realize high-precision shape classification, this paper proposes a brake pad image classification algorithm including foreground segmentation, geometric feature selection and template matching. First the RGB image captured by the camera is converted to HSV color space and using saturation channel the brake pad is segmented from the dark belt background. Then the multi-dimensional geometric features of the area are extracted. Finally, an improved feature matching algorithm based on information entropy weighting is proposed, in which Manhattan distance of the feature space is weighted by the information entropy of the brake pad features. The experimental results show that the accuracy of the algorithm is 95.00%, and the average processing time is 110 ms. It can be applied to the real-time automatic classification procedure during brake manufacturing.
Key wordsbrake linings    machine vision    hue saturation value (HSV) color space    geometric feature    information entropy
收稿日期: 2018-01-19      出版日期: 2018-06-15
通讯作者: 孙振国,副教授,E-mail:sunzhg@tsinghua.edu.cn     E-mail: sunzhg@tsinghua.edu.cn
引用本文:   
赵磊, 张文, 孙振国, 陈强. 基于色彩分割及信息熵加权特征匹配的刹车片图像分类算法[J]. 清华大学学报(自然科学版), 2018, 58(6): 547-552.
ZHAO Lei, ZHANG Wen, SUN Zhenguo, CHEN Qiang. Brake pad image classification algorithm basedon color segmentation and information entropy weighted feature matching. Journal of Tsinghua University(Science and Technology), 2018, 58(6): 547-552.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.26.025  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I6/547
  图1 原始刹车片图像
  图2 刹车片 HSV通道分量图像
  图3 刹车片的密实度特征
  图4 刹车片区域边缘放大图
  表1 部分刹车片的特征提取结果
  表2 各个刹车片特征的信息熵
  图5 部分刹车片 HSV空间分割结果
[1] 左东祥, 陈晓荣. 基于HALCON的刹车片尺寸和表面缺陷检测系统[J]. 电子科技, 2016, 29(11):78-80. ZUO D X, CHEN X R. Detection system of brake based on HALCON[J]. Electronic Science and Technology, 2016, 29(11):78-80. (in Chinese)
[2] 马艳宁, 陈晓荣, 张运涛. 基于Halcon的刹车片字符检测算法研究[J]. 电子科技, 2016, 29(10):101-103. MA Y N, CHEN X R, ZHANG Y T. Research on the brake character detection algorithm based on Halcon[J]. Electronic Science and Technology, 2016, 29(10):101-103. (in Chinese)
[3] 曾强, 孙坚. 基于HALCON的刹车片轮廓缺陷检测方法研究[J]. 煤矿机械, 2016, 37(8):143-146. ZENG Q, SUN J. Research on contour defects detection for break pad based on HALCON[J]. Coal Mine Machinery, 2016, 37(8):143-146. (in Chinese)
[4] BELONGIE S, MALIK J, PUZICHA J. Shape matching and object recognition using shape contexts[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(4):509-522.
[5] MOKHTARIAN F, ABBASI S, KITTLER J. Efficient and robust retrieval by shape content through curvature scale space[C]//Proceedings of the International Workshop on Image Databases and Multi-Media Search. Amsterdam, Netherlands:IAPR, 1996:35-42.
[6] CHUI H, RANGARAJAN A. A new algorithm for non-rigid point matching[C]//Proceedings of the 2000 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Hilton Head Island, USA:IEEE, 2000:44-51.
[7] ADAMEK T, O'CONNOR N E. A multiscale representation method for nonrigid shapes with a single closed contour[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14(5):742-753.
[8] DU P J, TAN K, SU H J. Feature extraction for target identification and image classification of OMIS hyperspectral image[J]. Mining Science and Technology, 2009, 19(6):835-841.
[9] 冯彦铭, 谢家龙, 李林升, 等. 基于八邻域跟踪算法的封闭区域几何尺寸测量[J]. 机械工程与自动化, 2013(6):170-171, 173. FENG Y M, XIE J L, LI L S, et al. Closed area geometric measurement based on eight neighborhood tracking algorithm[J]. Mechanical Engineering & Automation, 2013(6):170-171,173. (in Chinese)
[10] HU M K. Visual pattern recognition by moment invariants[J]. Information Theory, IRE Transactions on, 1962, 8(2):179-187.
[11] 肖汉光, 蔡从中. 特征向量的归一化比较性研究[J]. 计算机工程与应用, 2009, 45(22):117-119. XIAO H G, CAI C Z. Comparison study of normalization of feature vector[J]. Computer Engineering and Applications, 2009, 45(22):117-119. (in Chinese)
[12] SHANNON C E, WEAVER W. The mathematical theory of communication[J]. Physics Today, 1950, 3(9):31-32.
[1] 张波,王文军,张伟,李升波,成波. 驾驶人眼睛局部区域定位算法[J]. 清华大学学报(自然科学版), 2014, 54(6): 756-762.
[2] 李伟,王伯雄,杨春毓,柳建楠. 基于机器视觉的药液检测系统的光辐射场优化方法[J]. 清华大学学报(自然科学版), 2014, 54(6): 787-793.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn