Abstract:The brachistochrone problem with viscous friction was studied to optimize the beam window (BW) shape of an accelerator driven sub-critical system (ADS) target. A set of nonlinear integral equations was derived using the variational method. The Newton iteration method could not get a convergent solution or an approximate solution for the highly viscous conditions, so an optimization method was developed. The particle swarm optimization (PSO) algorithm was found to be more efficient for the highly viscous conditions than other three heuristic algorithms with approximately linear convergence. The flow separation is later and the stagnation region is smaller for the brachistochrone BW instead of the semielliptical BW, which enhances the heat transfer.
李胜强, 谭铭, 张展博. 含黏性力最速降线问题的最优化解法及其在ADS设计中的应用[J]. 清华大学学报(自然科学版), 2018, 58(6): 563-569.
LI Shengqiang, TAN Ming, ZHANG Zhanbo. An optimization method of brachistochrone problem with viscous friction and its application in ADS design. Journal of Tsinghua University(Science and Technology), 2018, 58(6): 563-569.
[1] 陈海燕, 徐长江. ADS靶区流场的数值模拟[J]. 核科学与工程, 2002, 22(4):361-364. CHEN H Y, XU C J. Numerical simulations of flow field in the target region of accelerator-driven subcritical reactor system[J]. Chinese Journal of Nuclear Science and Engineering, 2002, 22(4):361-364. (in Chinese) [2] 徐敬尧. 先进核反应堆用铅铋合金性能及纯净化技术研究[D]. 合肥:中国科学技术大学, 2013. XU J Y. Study on performance and purification technology of lead-bismuth alloy for advanced nuclear reactor[D]. Hefei:University of Science and Technology of China, 2013. (in Chinese) [3] SUGAWARA T, NISHIHARA K, OBAYASHI H, et al. Conceptual design study of beam window for accelerator-driven system[J]. Journal of Nuclear Science and Technology, 2010, 47(10):953-962. [4] 徐长江, 陈海燕. 基于流场数值模拟的ADS靶件结构的设计优化[J]. 原子能科学技术, 2003, 37(2):111-115. XU C J, CHEN H Y. Design optimization of ADS target based on numerical simulations of flow field[J]. Atomic Energy Science and Technology, 2003, 37(2):111-115. (in Chinese) [5] 秦雪. 加速器驱动次临界系统中液态有窗和无窗靶的中子物理及热工水力特性[D]. 重庆:重庆大学, 2015. QIN X. Neutron physics and thermal-hydraulic characteristics of liquid window and windowless target in accelerator driven sub-critical systems[D]. Chongqing:Chongqing University, 2015. (in Chinese) [6] 章熙民, 任泽霈, 梅飞鸣. 传热学[M]. 5版. 北京:中国建筑工业出版社, 2007. ZHANG X M, REN Z P, MEI F M. Principles of heat transfer[M]. 5th ed. Beijing:China Architecture & Building Press, 2007. (in Chinese) [7] 吴佩萱. "最速降线"问题——数学史上最激动人心的一次公开挑战[J]. 数学通报, 2006, 45(5):42-44. WU P X. Brachistochrone:The most stirring challenge in mathematics history[J]. Bulletin Des Sciences Mathematics, 2006, 45(5):42-44. (in Chinese) [8] GOLUBEV Y F. Brachistochrone with friction[J]. Journal of Computer and Systems Sciences International, 2010, 49(5):719-730. [9] GOLUBEV Y F. Brachistochrone with dry and arbitrary viscous friction[J]. Journal of Computer and Systems Sciences International, 2012, 51(1):22-37. [10] VONDRUKHOV A S, GOLUBEV Y F. Brachistochrone with an accelerating force[J]. Journal of Computer and Systems Sciences International, 2014, 53(6):824-838. [11] VONDRUKHOV A S, GOLUBEV Y F. Optimal trajectories in the brachistochrone problem with an accelerating force[J]. Journal of Computer and Systems Sciences International, 2015, 54(4):514-524. [12] SZARKOWICZ D S. Investigating the brachistochrone with a multistage Monte Carlo method[J]. International Journal of Systems Science, 1995, 26(2):233-243. [13] 史友进, 俞晓明. 库仑摩擦最速降曲线问题的讨论[J]. 盐城工学院学报(自然科学版), 2012, 25(2):1-4. SHI Y J, YU X M. On Brachistochrone with Coulomb friction[J]. Journal of Yancheng Institute of Technology (Natural Science Edition), 2012, 25(2):1-4. (in Chinese) [14] 周嘉炜, 曹炳阳, 过增元. 具有黏滞阻力时的最速降线[J]. 力学与实践, 2011, 33(3):11-14. ZHOU J W, CAO B Y, GUO Z Y. Brachistochrone with viscous resistance[J]. Mechanics in Engineering, 2011, 33(3):11-14. (in Chinese) [15] SMITH D R. Variational methods in optimization[M]. New York:Dover Publications, 1974. [16] SINGH B, KUMAR R. Brachistochrone problem in nonuniform gravity[J]. Indian Journal of Pure and Applied Mathematics, 1988, 19(6):575-585. [17] VRATANAR B, SAJE M. On the analytical solution of the brachistochrone problem in a non-conservative field[J]. International Journal of Non-Linear Mechanics, 1998, 33(3):489-505. [18] STORK D G, YANG J X. The general unrestrained brachistochrone[J]. American Journal of Physics, 1988, 56(1):22-26. [19] CHERKASOV O Y, ZARODNYUK A V. Brachistochrone problem with linear and quadratic drag[J]. AIP Conference Proceedings, 2014, 1637:195-200. [20] 老大中. 变分法基础[M]. 2版. 北京:国防工业出版社, 2007. LAO D Z. Fundamentals of the calculus of variations[M]. 2nd ed. Beijing:National Defense Industry Press, 2007. (in Chinese) [21] 蒋金山, 何春雄, 潘少华. 最优化计算方法[M]. 广州:华南理工大学出版社, 2007. JIANG J S, HE C X, PAN S H. Optimization computational method[M]. Guangzhou:South China University of Technology Press, 2007. (in Chinese) [22] 王凌. 智能优化算法及其应用[M]. 北京:清华大学出版社, 2001. WANG L. Intelligent optimization algorithms with applications[M]. Beijing:Tsinghua University Press, 2001. (in Chinese) [23] 高尚, 杨静宇. 群智能算法及其应用[M]. 北京:中国水利水电出版社, 2006. GAO S, YANG J Y. Swarm intelligence algorithms and applications[M]. Beijing:China Water & Power Press, 2006. (in Chinese)