Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (6): 563-569    DOI: 10.16511/j.cnki.qhdxxb.2018.22.029
  核能与新能源工程 本期目录 | 过刊浏览 | 高级检索 |
含黏性力最速降线问题的最优化解法及其在ADS设计中的应用
李胜强, 谭铭, 张展博
清华大学 核能与新能源技术研究院, 北京 100084
An optimization method of brachistochrone problem with viscous friction and its application in ADS design
LI Shengqiang, TAN Ming, ZHANG Zhanbo
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
全文: PDF(2804 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为优化加速器驱动次临界系统(ADS)靶件束窗形状设计,该文研究了一类含黏性力的最速降线问题。采用变分法进行分析,最终需数值求解一组非线性积分方程。针对Newton迭代法在高黏性系数情况下难以获得收敛解且无法获得近似解的缺陷,提出一种最优化求解思路。通过数值试验比较了4种启发式最优化算法的计算效率,并选择粒子群算法与Newton迭代法作进一步对比。结果表明:在高黏性系数情况下粒子群算法计算效率优于Newton迭代法,并且粒子群算法在该问题上近似线性收敛。用最速降线取代半椭圆的束窗形状后,流动分离更晚且流道滞止区更小,有利于提升换热效率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李胜强
谭铭
张展博
关键词 加速器驱动次临界系统 (ADS)最速降线黏性力粒子群优化算法    
Abstract:The brachistochrone problem with viscous friction was studied to optimize the beam window (BW) shape of an accelerator driven sub-critical system (ADS) target. A set of nonlinear integral equations was derived using the variational method. The Newton iteration method could not get a convergent solution or an approximate solution for the highly viscous conditions, so an optimization method was developed. The particle swarm optimization (PSO) algorithm was found to be more efficient for the highly viscous conditions than other three heuristic algorithms with approximately linear convergence. The flow separation is later and the stagnation region is smaller for the brachistochrone BW instead of the semielliptical BW, which enhances the heat transfer.
Key wordsaccelerator driven sub-critical system (ADS)    brachistochrone    viscous friction    particle swarm optimization (PSO) algorithm
收稿日期: 2017-12-08      出版日期: 2018-06-15
引用本文:   
李胜强, 谭铭, 张展博. 含黏性力最速降线问题的最优化解法及其在ADS设计中的应用[J]. 清华大学学报(自然科学版), 2018, 58(6): 563-569.
LI Shengqiang, TAN Ming, ZHANG Zhanbo. An optimization method of brachistochrone problem with viscous friction and its application in ADS design. Journal of Tsinghua University(Science and Technology), 2018, 58(6): 563-569.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.029  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I6/563
  图1 ADS散裂靶结构示意图
  图2 最速降线问题的小球受力示意图
  表1 4种最优化算法计算效率对比
  图3 粒子群算法与 Newton迭代法计算效率对比
  图4 粒子群算法收敛速度分析
  图5 不同等效阻力系数下含黏性力 最速降线计算结果
  图6 (网络版彩图)最速降线束窗与椭圆束窗的 速度场及局部流场对比
[1] 陈海燕, 徐长江. ADS靶区流场的数值模拟[J]. 核科学与工程, 2002, 22(4):361-364. CHEN H Y, XU C J. Numerical simulations of flow field in the target region of accelerator-driven subcritical reactor system[J]. Chinese Journal of Nuclear Science and Engineering, 2002, 22(4):361-364. (in Chinese)
[2] 徐敬尧. 先进核反应堆用铅铋合金性能及纯净化技术研究[D]. 合肥:中国科学技术大学, 2013. XU J Y. Study on performance and purification technology of lead-bismuth alloy for advanced nuclear reactor[D]. Hefei:University of Science and Technology of China, 2013. (in Chinese)
[3] SUGAWARA T, NISHIHARA K, OBAYASHI H, et al. Conceptual design study of beam window for accelerator-driven system[J]. Journal of Nuclear Science and Technology, 2010, 47(10):953-962.
[4] 徐长江, 陈海燕. 基于流场数值模拟的ADS靶件结构的设计优化[J]. 原子能科学技术, 2003, 37(2):111-115. XU C J, CHEN H Y. Design optimization of ADS target based on numerical simulations of flow field[J]. Atomic Energy Science and Technology, 2003, 37(2):111-115. (in Chinese)
[5] 秦雪. 加速器驱动次临界系统中液态有窗和无窗靶的中子物理及热工水力特性[D]. 重庆:重庆大学, 2015. QIN X. Neutron physics and thermal-hydraulic characteristics of liquid window and windowless target in accelerator driven sub-critical systems[D]. Chongqing:Chongqing University, 2015. (in Chinese)
[6] 章熙民, 任泽霈, 梅飞鸣. 传热学[M]. 5版. 北京:中国建筑工业出版社, 2007. ZHANG X M, REN Z P, MEI F M. Principles of heat transfer[M]. 5th ed. Beijing:China Architecture & Building Press, 2007. (in Chinese)
[7] 吴佩萱. "最速降线"问题——数学史上最激动人心的一次公开挑战[J]. 数学通报, 2006, 45(5):42-44. WU P X. Brachistochrone:The most stirring challenge in mathematics history[J]. Bulletin Des Sciences Mathematics, 2006, 45(5):42-44. (in Chinese)
[8] GOLUBEV Y F. Brachistochrone with friction[J]. Journal of Computer and Systems Sciences International, 2010, 49(5):719-730.
[9] GOLUBEV Y F. Brachistochrone with dry and arbitrary viscous friction[J]. Journal of Computer and Systems Sciences International, 2012, 51(1):22-37.
[10] VONDRUKHOV A S, GOLUBEV Y F. Brachistochrone with an accelerating force[J]. Journal of Computer and Systems Sciences International, 2014, 53(6):824-838.
[11] VONDRUKHOV A S, GOLUBEV Y F. Optimal trajectories in the brachistochrone problem with an accelerating force[J]. Journal of Computer and Systems Sciences International, 2015, 54(4):514-524.
[12] SZARKOWICZ D S. Investigating the brachistochrone with a multistage Monte Carlo method[J]. International Journal of Systems Science, 1995, 26(2):233-243.
[13] 史友进, 俞晓明. 库仑摩擦最速降曲线问题的讨论[J]. 盐城工学院学报(自然科学版), 2012, 25(2):1-4. SHI Y J, YU X M. On Brachistochrone with Coulomb friction[J]. Journal of Yancheng Institute of Technology (Natural Science Edition), 2012, 25(2):1-4. (in Chinese)
[14] 周嘉炜, 曹炳阳, 过增元. 具有黏滞阻力时的最速降线[J]. 力学与实践, 2011, 33(3):11-14. ZHOU J W, CAO B Y, GUO Z Y. Brachistochrone with viscous resistance[J]. Mechanics in Engineering, 2011, 33(3):11-14. (in Chinese)
[15] SMITH D R. Variational methods in optimization[M]. New York:Dover Publications, 1974.
[16] SINGH B, KUMAR R. Brachistochrone problem in nonuniform gravity[J]. Indian Journal of Pure and Applied Mathematics, 1988, 19(6):575-585.
[17] VRATANAR B, SAJE M. On the analytical solution of the brachistochrone problem in a non-conservative field[J]. International Journal of Non-Linear Mechanics, 1998, 33(3):489-505.
[18] STORK D G, YANG J X. The general unrestrained brachistochrone[J]. American Journal of Physics, 1988, 56(1):22-26.
[19] CHERKASOV O Y, ZARODNYUK A V. Brachistochrone problem with linear and quadratic drag[J]. AIP Conference Proceedings, 2014, 1637:195-200.
[20] 老大中. 变分法基础[M]. 2版. 北京:国防工业出版社, 2007. LAO D Z. Fundamentals of the calculus of variations[M]. 2nd ed. Beijing:National Defense Industry Press, 2007. (in Chinese)
[21] 蒋金山, 何春雄, 潘少华. 最优化计算方法[M]. 广州:华南理工大学出版社, 2007. JIANG J S, HE C X, PAN S H. Optimization computational method[M]. Guangzhou:South China University of Technology Press, 2007. (in Chinese)
[22] 王凌. 智能优化算法及其应用[M]. 北京:清华大学出版社, 2001. WANG L. Intelligent optimization algorithms with applications[M]. Beijing:Tsinghua University Press, 2001. (in Chinese)
[23] 高尚, 杨静宇. 群智能算法及其应用[M]. 北京:中国水利水电出版社, 2006. GAO S, YANG J Y. Swarm intelligence algorithms and applications[M]. Beijing:China Water & Power Press, 2006. (in Chinese)
[1] 刘华森, 陈恳, 王国磊. 基于粒子群算法的工件三维膨胀变形下转站参数优化[J]. 清华大学学报(自然科学版), 2021, 61(9): 979-985.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn