Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (8): 698-702    DOI: 10.16511/j.cnki.qhdxxb.2018.21.016
  计算机科学与技术 本期目录 | 过刊浏览 | 高级检索 |
推荐系统中的带辅助信息的变分自编码器
刘卫东, 刘亚宁
清华大学 计算机科学与技术系, 北京 100084
Variational autoencoder with side information in recommendation systems
LIU Weidong, LIU Yaning
Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
全文: PDF(915 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 变分自编码器是一种非常简洁有效的非监督学习方法,应用在推荐系统领域也能取得极佳的性能。推荐系统的主要工作之一是对缺失的数据进行估计并补全,变分自编码器通过对已有数据的学习和抽象能够挖掘出数据间隐式的关联因子,并基于此完成对缺失数据的预测。该文将额外的辅助信息加入到变分自编码器中以提高预测的准确度,并通过在包括高考成绩及电影评分等在内的实际数据集测试中验证了辅助信息的有效性,当辅助信息充足时在高考成绩数据集上最多可以降低31%的均方根误差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘卫东
刘亚宁
关键词 推荐系统变分推理自编码器协同过滤    
Abstract:The variational autoencoder (VAE) unsupervised learning method can provide excellent results in recommendation systems. Recommendation systems seek to accurately identify a missing value with the VAE learning a latent factor from the input and then predicting when to use this for reconstructing the result. Side information was added to the VAE to improve the predictions with tests on datasets including MovieLens and grades data showing that it can significantly improve the prediction accuracy by up to 31% with enough side information with the grades dataset.
Key wordsrecommendation systems    variational inference    autoencoder    collaborative filtering
收稿日期: 2018-02-07      出版日期: 2018-08-15
引用本文:   
刘卫东, 刘亚宁. 推荐系统中的带辅助信息的变分自编码器[J]. 清华大学学报(自然科学版), 2018, 58(8): 698-702.
LIU Weidong, LIU Yaning. Variational autoencoder with side information in recommendation systems. Journal of Tsinghua University(Science and Technology), 2018, 58(8): 698-702.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.21.016  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I8/698
  表1 不同模型在 MovieLens数据集上的 RMSE
  图1 不同模型在高考成绩数据集上的均方根误差
  表2 sVAE 在高考成绩数据集不同的辅助信息下的 RMSE
  图2 在高考成绩数据集上不同辅助信息 维度下的模型优化收敛时间
[1] NELWAMONDO F V, MOHAMED S, MARWALA T. Missing data:A comparison of neural network and expectation maximisation techniques[J]. Current Science, 2007, 93(11):1514-1521.
[2] RESNICK P, VARIAN H R. Recommender systems[J]. Communications of the ACM, 1997, 40(3):56-58.
[3] BREESE J S, HECKERMAN D, KADIE C. Empirical analysis of predictive algorithms for collaborative filtering[J]. Uncertainty in Artificial Intelligence, 1998, 98(7):43-52.
[4] HERLOCKER J L, KONSTAN J A, TERVEEN L G, et al. Evaluating collaborative filtering recommender systems[J]. ACM Transactions on Information Systems (TOIS), 2004, 22(1):5-53.
[5] SARWAR B, KARYPIS G, KONSTAN J, et al. Item-based collaborative filtering recommendation algorithms[C]//Proceedings of the 10th International Conference on World Wide Web. New York:ACM, 2001:285-295.
[6] KOREN Y, BELL R, VOLINSKY C. Matrix factorization techniques for recommender systems[J]. Computer, 2009, 42(8):30-37.
[7] SALAKHUTDINOV R, MNIH A, HINTON G. Restricted Boltzmann machines for collaborative filtering[C]//Proceedings of the 24th International Conference on Machine Learning. New York:ACM, 2007:791-798.
[8] STRUB F, GAUDEL R, MARY J. Hybrid recommender system based on autoencoders[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York:ACM, 2016:11-16.
[9] OUYANG Y, LIU W, RONG W, et al. Autoencoder-based collaborative filtering[C]//Proceedings of the 21st International Conference on Neural Information Processing. Berlin:Springer, 2014:284-291.
[10] SEDHAIN S, MENON A K, SANNER S, et al. Autorec:Autoencoders meet collaborative filtering[C]//Proceedings of the 24th International Conference on World Wide Web. New York:ACM, 2015:111-112.
[11] SUZUKI Y, OZAKI T. Stacked denoising autoencoder-based deep collaborative filtering using the change of similarity[C]//Proceedings of the 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA). Piscataway:IEEE, 2017:498-502.
[12] LI X P, SHE J. Collaborative variational autoencoder for recommender systems[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2017:305-314.
[13] BRAND M. Incremental singular value decomposition of uncertain data with missing values[C]//Proceedings of the 7th European Conference on Computer Vision. Berlin:Springer, 2002:707-720.
[14] SØNDERBY C K, RAIKO T, MAALØE L, et al. Ladder variational autoencoders[C]//Proceedings of the 29th Annual Conference on Neural Information Processing Systems. Cambridge, Massachusetts:MIT Press, 2016:3738-3746.
[15] WANG H, SHI X J, YEUNG D Y. Collaborative recurrent autoencoder:Recommend while learning to fill in the blanks[C]//Proceedings of the 29th Annual Conference on Neural Information Processing Systems. Cambridge, Massachusetts:MIT Press, 2016:415-423.
[1] 杨波, 邱雷, 吴书. 异质图神经网络协同过滤模型[J]. 清华大学学报(自然科学版), 2023, 63(9): 1339-1349.
[2] 贾凡, 康舒雅, 江为强, 王光涛. 基于相似性的多用户漏洞推荐算法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1399-1407.
[3] 平国楼, 曾婷玉, 叶晓俊. 基于评分迭代的无监督网络流量异常检测[J]. 清华大学学报(自然科学版), 2022, 62(5): 819-824.
[4] 刘树栋, 张嘉妮, 陈旭. 评论感知的异构变分自编码器推荐模型[J]. 清华大学学报(自然科学版), 2022, 62(1): 88-97.
[5] 和敬涵, 张可欣, 李猛, 聂铭, 宋元伟. 基于深度学习的柔性直流线路单端量波形特征保护[J]. 清华大学学报(自然科学版), 2021, 61(5): 478-486.
[6] 张敏, 丁弼原, 马为之, 谭云志, 刘奕群, 马少平. 基于深度学习加强的混合推荐方法[J]. 清华大学学报(自然科学版), 2017, 57(10): 1014-1021.
[7] 朱强, 孙玉强. 一种基于信任度的协同过滤推荐方法[J]. 清华大学学报(自然科学版), 2014, 54(3): 360-365.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn