Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (9): 827-832    DOI: 10.16511/j.cnki.qhdxxb.2018.22.031
  航天航空 本期目录 | 过刊浏览 | 高级检索 |
面向卫星高速数字通信的IQ独立处理基带结构
裴玉奎1,2, 郝浩然3, 苏厉3
1. 清华大学 宇航技术研究中心, 北京 100084;
2. 深圳清华大学研究院, 深圳 518057;
3. 清华大学 电子工程系, 北京 100084
IQ-separated baseband structure for high-speedsatellite digital communication
PEI Yukui1,2, HAO Haoran3, SU Li3
1. Tsinghua Space Center, Tsinghua University, Beijing 100084, China;
2. Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China;
3. Department of Electronic Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(1153 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 提高卫星数字传输的速率要求增大信道带宽,需要接收端的高采样率的模数转换器支持。在极高采样率下,共模(I)、正交(Q)两路使用独立的模数转换器采样,需要分别进行基带处理。针对该应用场景,设计了一种IQ独立处理的基带结构。该结构通过重新设计辅助序列、调整处理顺序、改变处理算法等手段,使频偏估计与定时同步等处理步骤能在IQ数据上独立进行。仿真结果表明:所设计的结构传输速度快,与传统结构的误比特率性能差距在2 dB之内。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
裴玉奎
郝浩然
苏厉
关键词 卫星通信基带结构IQ独立处理频偏估计定时同步    
Abstract:Increased satellite digital communication rates require larger channel bandwidths which require analog-digital converters (ADCs) with higher sampling rates in the receiver. The in-phase/quadrature (IQ) data have to be sampled separately for ultra-high sampling rates, which requires IQ-separated processing. A baseband structure developed here for IQ-separated processing uses redesigned pilot arrays, an adjusted processing order and modified algorithms that gives separate frequency error estimates and timing synchronization on IQ data. Simulations show that this structure is fast with a bit-error-rate only 2 dB higher than the traditional structure.
Key wordssatellite communication    baseband structure    in-phase/quadrature (IQ)-separated process    frequency error estimation    timing synchronization
收稿日期: 2017-12-18      出版日期: 2018-09-19
基金资助:国家自然科学基金项目(91538202,91338103);深圳科创委项目(JCYJ20160520140157342,CXZZ20150928165834560)
引用本文:   
裴玉奎, 郝浩然, 苏厉. 面向卫星高速数字通信的IQ独立处理基带结构[J]. 清华大学学报(自然科学版), 2018, 58(9): 827-832.
PEI Yukui, HAO Haoran, SU Li. IQ-separated baseband structure for high-speedsatellite digital communication. Journal of Tsinghua University(Science and Technology), 2018, 58(9): 827-832.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.031  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I9/827
  图1 本文设计的基带结构
  图2 系统帧结构示意图
  图3 IQ 独立处理频偏估计算法和传统算法的性能对比
  图4 定时误差估计原理示意图
  表1 系统仿真参数
  表2 系统仿真条件
  图5 本文结构与传统结构的误比特率性能对比
[1] 夏克文. 卫星通信[M]. 西安:西安电子科技大学出版社, 2008. XIA K W. Satellite communication[M]. Xi'an:Xidian University Press, 2008. (in Chinese)
[2] VIDAL O, VERELST G, LACAN J, et al. Next generation high throughput satellite system[C]//Proceedings of IEEE First AESS European Conference on Satellite Telecommunications. Rome, Italy, 2012:1-7.
[3] PELTON J N. New millimeter, terahertz, and light-wave frequencies for satellite communications[M]//PELTON J N, MADRY S, CAMACHO-LARA S. Handbook of satellite applications. Cham, Switzerland:Springer, 2017:413-429.
[4] 关响生. 面向IEEE 802.11aj的单载波物理层验证平台设计与实现[D]. 北京:清华大学, 2015.GUAN X S. Design and implementation of IEEE 802.11aj SC PHY prototype[D]. Beijing:Tsinghua University, 2015. (in Chinese)
[5] ROSETI C, LUGLIO M, ZAMPOGNARO F. Analysis and performance evaluation of a burst-based TCP for satellite DVB RCS links[J]. IEEE/ACM Transactions on Networking, 2010, 18(3):911-921.
[6] KAY S. A fast and accurate single frequency estimator[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(12):1987-1990.
[7] FITZ M P. Further results in the fast estimation of a single frequency[J]. IEEE Transactions on Communications, 1994, 42(234):862-864.
[8] RIFE D, BOORSTYN R. Single tone parameter estimation from discrete-time observations[J]. IEEE Transactions on Information Theory, 1974, 20(5):591-598.
[9] GARDNER F. A BPSK/QPSK timing-error detector for sampled receivers[J]. IEEE Transactions on Communications, 1986, 34(5):423-429.
[10] FITZ M P. Planar filtered techniques for burst mode carrier synchronization[C]//Proceedings of Global Telecommunications Conference. Phoenix, USA, 1991:365-369.
[11] DICK C, HARRIS F, RICE M. Synchronization in software radios. Carrier and timing recovery using FPGAs[C]//Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines. Napa Valley, USA, 2000:195-204.
[12] OERDER M, MEYR H. Digital filter and square timing recovery[J]. IEEE Transactions on Communications, 1988, 36(5):605-612.
[13] HWANG J, CHU C. FPGA implementation of an all-digital T/2-spaced QPSK receiver with Farrow interpolation timing synchronizer and recursive Costas loop[C]//Proceedings of 2004 IEEE Asia-Pacific Conference on Advanced System Integrated Circuits. Fukuoka, Japan, 2004:248-251.
[1] 靳瑾, 李娅强, 张晨, 匡麟玲, 晏坚. 全球动态场景下非静止轨道通信星座干扰发生概率和系统可用性[J]. 清华大学学报(自然科学版), 2018, 58(9): 833-840.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn