Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (10): 881-887    DOI: 10.16511/j.cnki.qhdxxb.2018.25.037
  土木工程 本期目录 | 过刊浏览 | 高级检索 |
基于SIFT的中厚板表面缺陷识别方法
周鹏1, 徐科2, 杨朝霖1
1. 北京科技大学 工程技术研究院, 北京 100083;
2. 北京科技大学 钢铁共性技术协同创新中心, 北京 100083
Surface defect recognition for moderately thick plates based on a SIFT operator
ZHOU Peng1, XU Ke2, YANG Chaolin1
1. Institute of Engineering Technology, University of Science & Technology Beijing, Beijing 100083, China;
2. Collaborative Innovation Center of Iron and Steel Technology, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(6678 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 中厚板在生产过程中,由于各种因素难免会产生压痕、辊印、划伤等缺陷,严重的缺陷会对下一道轧制工艺产生不良的影响,因此在包含氧化铁皮背景中准确识别出真实缺陷对提高钢铁企业的产品质量至关重要。该文采用尺度不变特征转换(scale-invariant feature transform,SIFT)算子来提取具有尺度旋转不变性的特征向量,并采用Euclidean距离相似性判定度量实现图像匹配,进而识别出中厚板表面缺陷。该文通过大量实验分析并确定各参数取值,最终将SIFT算法应用到中厚板表面缺陷识别,实验结果表明:该算法对辊印、压痕等缺陷的识别率较高,能够达到95%,尤其是对连续出现的缺陷检测效果明显,从而验证了SIFT方法较好的光照不变性、旋转不变性和仿射不变性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周鹏
徐科
杨朝霖
关键词 中厚板表面检测尺度不变局部特征    
Abstract:Moderately thick plates have defects such as indentations, roll marks and scratches from the production processes. Since serious defects can negatively impact the next rolling process, operators must identify serious defects containing iron oxide defects on the surface to improve the quality of iron and steel products. A scale invariant feature transform (SIFT) operator was used to extract feature vectors that are scale rotation invariant. A Euclidean distance similarity measure is used for image matching to identify the surface defects of moderately thick plates. Many tests were then run to identify the proper values of each parameter. The SIFT algorithm then had a 95% surface defect recognition rate and was especially effective for continuous defects. Thus, this SIFT method which is unaffected by the illumination and is rotation and affine invariant gives excellent recognition of iron oxide defects.
Key wordsmoderately thick plate    surface detection    scale-invariant    local feature
收稿日期: 2017-12-06      出版日期: 2018-10-17
基金资助:“十二五”国家科技支撑计划资助项目(2012BAB19B06);国家自然科学基金资助项目(51674031);中央高校基本科研业务费资助项目(FRF-TP-16-018A1)
通讯作者: 徐科,研究员,E-mail:xuke@ustb.edu.cn     E-mail: xuke@ustb.edu.cn
引用本文:   
周鹏, 徐科, 杨朝霖. 基于SIFT的中厚板表面缺陷识别方法[J]. 清华大学学报(自然科学版), 2018, 58(10): 881-887.
ZHOU Peng, XU Ke, YANG Chaolin. Surface defect recognition for moderately thick plates based on a SIFT operator. Journal of Tsinghua University(Science and Technology), 2018, 58(10): 881-887.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.037  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I10/881
  图1 中厚板表面的氧化铁皮
  图2 DoG尺度空间
  图3 Gauss金字塔与 DoG的实现
  图4 由关键点邻域梯度信息生成特征向量直方图
  图5 中厚板检测流程
  图6 预处理后图像
  图7 各缺陷图像间的SIFT匹配
  图8 σ 与特征点检测
  图9 组别与特征点检测
  图10 缺陷类型阈值响应
  表1 SIFT算法缺陷检出率
  表2 SIFT算法缺陷误检率
  图11 SIFT检测结果
[1] 吴平川, 路同浚, 王炎. 机器视觉与钢板表面缺陷的无损检测[J]. 无损检测, 2000, 22(1):13-16, 47. WU P C, LU T J, WANG Y. Machine-vision technology and nondestructive detection of the surface defects in strip steel[J]. Nondestructive Testing, 2000, 22(1):13-16, 47. (in Chinese)
[2] 徐科, 徐金梧. 基于图像处理的冷轧带钢表面缺陷在线检测技术[J]. 钢铁, 2002, 37(12):61-64. XU K, XU J W. On-line inspection of surface defects of cold rolled strips based on image processing[J]. Iron & Steel, 2002, 37(12):61-64. (in Chinese)
[3] LOWE D G. Object recognition from local scale-invariant features[C]//Proceedings of the 17th IEEE International Conference on Computer Vision. Kerkyra, Greece:IEEE, 1999:1150-1157.
[4] LINDEBERG T. Feature detection with automatic scale selection[J]. International Journal of Computer Vision, 1998, 30(2):79-116.
[5] WANG H X, YANG K J, GAO F, et al. Normalization methods of SIFT vector for object recognition[C]//Proceedings of the 10th International Symposium on Distributed Computing and Applications to Business, Engineering and Science. Wuxi, China:IEEE, 2011:175-178.
[6] ZHAO W L, NGO C W. Flip-invariant SIFT for copy and object detection[J]. IEEE Transactions on Image Processing, 2013, 22(3):980-991.
[7] BELCHER C, DU Y Z. Region-based SIFT approach to iris recognition[J]. Optics and Lasers in Engineering, 2009, 47(1):139-147.
[8] YUE H J, SUN X Y, WU F, et al. SIFT-based image compression[C]//Proceedings of 2012 IEEE International Conference on Multimedia and Expo. Melbourne, VIC, Australia:IEEE, 2012:473-478.
[9] HSU C Y, LU C S, PEI S C. Image feature extraction in encrypted domain with privacy-preserving SIFT[J]. IEEE Transactions on Image Processing, 2012, 21(11):4593-4607.
[10] OBESO F, GONZALEZ J A, BROWN A. Intelligent on-line surface inspection on a skinpass mill[J]. Iron and Steel Engineer, 1997(10):29-35.
[11] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
[1] 唐颖复, 王忠静, 张子雄. 基于改进SIFT和SURF算法的沙丘图像配准[J]. 清华大学学报(自然科学版), 2021, 61(2): 161-169.
[2] 马文婷, 杨健, 高伟, 周广益. 面向极化SAR图像配准的极化特征[J]. 清华大学学报(自然科学版), 2014, 54(2): 270-274.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn