Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (10): 899-905    DOI: 10.16511/j.cnki.qhdxxb.2018.26.040
  航空航天与工程力学 本期目录 | 过刊浏览 | 高级检索 |
连续旋转爆震涡轮发动机热力过程与性能分析
计自飞1,2, 张会强1, 谢峤峰1, 王兵1
1. 清华大学 航天航空学院, 北京 100084;
2. 中国航发沈阳发动机研究所, 沈阳 110015
Thermodynamic process and performance analysis of the continuous rotating detonation turbine engine
JI Zifei1,2, ZHANG Huiqiang1, XIE Qiaofeng1, WANG Bing1
1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
2. Shenyang Engine Research Institute, Aero Engine Corporation of China, Shenyang 110015, China
全文: PDF(1201 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 该文提出一种完整的连续旋转爆震涡轮发动机(continuous rotating detonation turbine engine,CRDTE)系统方案,建立了其主要工作过程的数学模型以及参数化整机性能分析模型。研究了压气机总增压比、涡轮前总温等设计参数对发动机总体性能的影响。结果表明:随着压气机总增压比的增大,发动机的比推力和循环热效率先增大后减小,耗油率单调增大,而涡轮前总温越大,发动机的比推力和耗油率越高。与同参数传统燃气涡轮发动机进行了总体性能比较研究,表明CRDTE在全工作范围总体性能具有优势,并揭示了其获得性能增益的原因。与现役先进航空燃气涡轮发动机F119相比,在相同循环参数条件下,CRDTE的比推力显著提升,同时耗油率稍有降低。该旋转爆震涡轮发动机方案合理、可行,为其工程化应用提供了依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
计自飞
张会强
谢峤峰
王兵
关键词 旋转爆震涡轮爆震推进总体性能最佳增压比    
Abstract:An parametric analytical model was developed for the continuous rotating detonation turbine engine (CRDTE) to predict the engine performance for various compression ratios and turbine inlet temperatures. The results show that increasing the compression ratio first increases the specific thrust and the thermal efficiency but they then decrease. Increasing the turbine inlet temperature increases the specific thrust and the thermal efficiency. The engine has better overall performance than a conventional aero-turbine engine with the same cycle parameters over the entire working range as explained by the results. The specific thrust is significantly better than that of the advanced F119 aero-turbine engine and the specific fuel consumption is reduced slightly for the same cycle parameters. Thus, the CRDTE design is quite reasonable and this model can be used for engineering designs.
Key wordscontinuous rotating detonation turbine engine    detonation based propulsion    overall performance    optimum compression ratio
收稿日期: 2018-05-07      出版日期: 2018-10-17
通讯作者: 张会强,教授,E-mail:zhanghq@tsinghua.edu.cn     E-mail: zhanghq@tsinghua.edu.cn
引用本文:   
计自飞, 张会强, 谢峤峰, 王兵. 连续旋转爆震涡轮发动机热力过程与性能分析[J]. 清华大学学报(自然科学版), 2018, 58(10): 899-905.
JI Zifei, ZHANG Huiqiang, XIE Qiaofeng, WANG Bing. Thermodynamic process and performance analysis of the continuous rotating detonation turbine engine. Journal of Tsinghua University(Science and Technology), 2018, 58(10): 899-905.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.26.040  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I10/899
  图1 一种连续旋转爆震涡轮发动机的系统
  图2 连续旋转爆震涡轮发动机的理想热力循环过程
  图3 连续旋转爆震室模型验证
  图4 连续旋转爆震涡轮发动机总体性能随πc 的变化
  图5 循环参数对连续旋转爆震 涡轮发动机总体性能的影响
  图6 飞行参数对比推力的影响
  图7 飞行参数对热效率的影响
  图8 两类推进系统性能随飞行 Mach数的变化
  图9 两类推进系统性能随飞行高度的变化
  表1 CRDTE与传统燃气涡轮发动机特征截面参数比较
  表2 CRDTE与 F119发动机性能指标比较
[1] 廉筱纯, 吴虎. 航空发动机原理[M]. 西安:西北工业大学出版社, 2005. LIAN X C, WU H. Principles of aeroengine[M]. Xi'an:Northwestern Polytechnical University Press, 2005. (in Chinese)
[2] LU F K, BRAUN E M. Rotating detonation wave propulsion:Experimental challenges, modeling, and engine concepts[J]. Journal of Propulsion and Power, 2014, 30(5):1125-1142.
[3] BYKOVSKⅡ F A, ZHDAN S A, VEDERNIKOV E F. Continuous spin detonations[J]. Journal of Propulsion and Power, 2006, 22(6):1204-1216.
[4] KAILASANATH K. Review of propulsion applications of detonation waves[J]. AIAA Journal, 2000, 38(9):1698-1708.
[5] WOLAAŃGSKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute, 2013, 34(1):125-158.
[6] TOBITA A, FUJIWARA T, WOLAAŃGSKI P. Detonation engine and flying object provided therewith:7784267[P]. 2010-08-31.
[7] TELLEFSEN J, KING P, SCHAUER F, et al. Analysis of an RDE with convergent nozzle in preparation for turbine integration[C]//Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville, USA:American Institute of Aeronautics and Astronautics, 2012, AIAA 2012-0773.
[8] WELSH D J, KING P, SCHAUER F, et al. RDE integration with T63 turboshaft engine components[C]//Proceedings of the 52nd Aerospace Sciences Meeting. Reston, America:AIAA SciTech Forum, 2014, AIAA 2014-1316.
[9] ZHOU S B, MA H, LI S, et al. Effects of a turbine guide vane on hydrogen-air rotating detonation wave propagation characteristics[J]. International Journal of Hydrogen Energy, 2017, 42(31):20297-20305.
[10] WOLAAŃGSKI P. Application of the continuous rotating detonation to gas turbine[J]. Applied Mechanics and Materials, 2015, 782:3-12.
[11] FAROKHI S. Aircraft propulsion[M]. 2nd ed. New York:John Wiley & Sons, 2014.
[12] CAO H V. Parametric cycle analysis of continuous rotating detonation ejector-augmented rocket engine[C]//Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Joint Propulsion Conferences. Nashville, USA:American Institute of Aeronautics and Astronautics, 2013:AIAA 2013-3971.
[13] MA F H, CHOI J Y, YANG V. Thrust chamber dynamics and propulsive performance of single-tube pulse detonation engines[J]. Journal of propulsion and power, 2005, 21(3):512-526.
[14] YI T H, LOU J, TURANGAN C, et al. Propulsive performance of a continuously rotating detonation engine[J]. Journal of Propulsion and Power, 2011, 27(1):171-181.
[15] WINTENBERGER E, SHEPHERD J E. Thermodynamic cycle analysis for propagating detonations[J]. Journal of Propulsion and Power, 2006, 22(3):694-697.
[16] 陈仲光, 张志舒, 李德旺, 等. F119发动机总体性能特点分析与评估[J]. 航空科学技术, 2013(3):39-42. CHEN Z G, ZHANG Z S, LI D W, et al. Analysis and evaluation of F119 engine overall performance[J]. Aeronautical Science and Technology, 2013(3):39-42. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn