Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2018, Vol. 58 Issue (12): 1101-1106    DOI: 10.16511/j.cnki.qhdxxb.2018.25.046
  热能工程 本期目录 | 过刊浏览 | 高级检索 |
超临界压力CO2竖直管内传热恶化抑制实验
王振川, 胥蕊娜, 熊超, 姜培学
清华大学 热科学与动力工程教育部重点实验室, 二氧化碳资源化利用与减排技术北京市重点实验室, 北京 100084
Experimental study on the inhibition of heat transfer deterioration of supercritical pressure CO2
WANG Zhenchuan, XU Ruina, XIONG Chao, JIANG Peixue
Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China
全文: PDF(1440 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为抑制浮升力导致的超临界压力流体传热恶化,该文采用光管内插螺旋结构,增强管内湍流发展,提高流体管内换热性能。对超临界压力CO2在竖直光管、内插螺旋管内对流换热进行了实验研究,比较了热流密度、进口Re、流动方向等因素对换热的影响,讨论了内插螺旋结构对传热恶化现象的抑制作用。研究结果表明:由于浮升力传热恶化作用,流体在光管内向上流动壁温分布呈非线性变化趋势,壁温峰值区域随热流密度升高逐渐向入口区域移动;光管内插入螺旋结构可以有效抑制由浮升力产生的传热恶化作用,显著提高超临界压力CO2管内对流换热强度,内插螺旋结构管相对于光管可以提高对流换热系数约200%以上;超临界压力CO2在内插螺旋结构管内流动与换热时,在热流密度较高情况下,浮升力依然会对换热起到一定的恶化作用,流体向下流动时沿程对流换热系数略高于向上流动。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王振川
胥蕊娜
熊超
姜培学
关键词 传热恶化抑制超临界压力CO2    
Abstract:The heat transfer can deteriorate with supercritical pressure fluids flowing in vertical tubes due to buoyancy. This study used a helical insert in the tube to change the flow structure and improve fluid heat transfer. Convection heat transfer of supercritical pressure CO2 in a vertical bare tube and with a helical insert was investigated experimentally to identify the effects of the heat flux, inlet Re, and flow direction on the heat transfer for both cases. The wall temperature distribution is nonlinear due to the buoyancy effect with the peak wall temperature gradually moving towards the entrance as the heat flux increases. The helical structure inserted into the bare tube effectively suppresses the heat transfer deterioration caused by the buoyancy effect and significantly increases the convective heat transfer the supercritical pressure CO2 in vertical tubes. The buoyancy effect can still reduce the heat transfer with supercritical pressure CO2 upward flow even with the helical insert structure for high heat fluxes.
Key wordsinhibition of heat transfer deterioration    supercritical pressure CO2
收稿日期: 2018-03-07      出版日期: 2018-12-13
基金资助:国家自然科学基金资助项目(51536004)
通讯作者: 姜培学,教授,E-mail:jiangpx@tsinghua.edu.cn     E-mail: jiangpx@tsinghua.edu.cn
引用本文:   
王振川, 胥蕊娜, 熊超, 姜培学. 超临界压力CO2竖直管内传热恶化抑制实验[J]. 清华大学学报(自然科学版), 2018, 58(12): 1101-1106.
WANG Zhenchuan, XU Ruina, XIONG Chao, JIANG Peixue. Experimental study on the inhibition of heat transfer deterioration of supercritical pressure CO2. Journal of Tsinghua University(Science and Technology), 2018, 58(12): 1101-1106.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.25.046  或          http://jst.tsinghuajournals.com/CN/Y2018/V58/I12/1101
  图1 实验系统图
  图2 螺旋结构扫描电镜
  图3 向上、 向下流动沿程壁温、 流体温度分布(Re=3300)
  图4 向上、 向下流动沿程壁温、 流体温度分布(Re=5500)
  图5 向上、 向下流动沿程对流换热系数分布
  图6 沿程Bo? 分布(实心:Re=3300; 空心Re=5500)
  图7 光管、 内插螺旋管沿程壁温对比
  图8 光管、 内插螺旋管沿程对流换热系数对比
  图9 向上、 向下沿程对流换热系数对比
[1] HEJZLAR P, DOSTAL V, DRISCOLL M J, et al. Assessment of gas cooled fast reactor with indirect supercritical CO2 cycle[J]. Nuclear Engineering and Technology, 2006, 38(2):109-118.
[2] 黄彦平, 王俊峰. 超临界二氧化碳在核反应堆系统中的应用[J]. 核动力工程, 2012, 33(3):21-27. HUANG Y P, WANG J F. Applications of supercritical carbon dioxide in nuclear reactor system[J]. Nuclear Power Engineering, 2012, 33(3):22-27. (in Chinese)
[3] 赵新宝, 鲁金涛, 袁勇, 等. 超临界二氧化碳布雷顿循环在发电机组中的应用和关键热端部件选材分析[J]. 中国电机工程学报, 2016, 36(1):154-162. ZHAO X B, LU J T, YUAN Y, et al. Analysis of supercritical carbon dioxide Brayton cycle and candidate materials of key hot components for power plants[J]. Proceedings of the CSEE, 2016, 36(1):154-162. (in Chinese)
[4] NEISES T, TURCHI C. A comparison of supercritical carbon dioxide power cycle configurations with an emphasis on CSP applications[J]. Energy Procedia, 2014, 49:1187-1196.
[5] HALL W B, JACKSON J D. Laminarisation of a turbulent pipe flow by buoyancy forces[C]//11th National Heat Transfer Conference. ASME Paper, 1969, No. 69-HT-55.
[6] MCELIGOT D M, JACKSON J D. "Deterioration" criteria for convective heat transfer in gas flow through non-circular ducts[J]. Nuclear Engineering and Design, 2004, 232(3):327-333.
[7] JIANG P X, ZHANG Y, ZHAO C R, et al. Convection heat transfer of CO2 at supercritical pressures in a vertical mini tube at relatively low reynolds numbers[J]. Experimental Thermal and Fluid Science, 2008, 32(8):1628-1637.
[8] JIANG P X, ZHANG Y, SHI R F. Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical mini-tube[J]. International Journal of Heat and Mass Transfer, 2008, 51(11-12):3052-3056.
[9] JIANG P X, LIU B, ZHAO C R, et al. Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime[J]. International Journal of Heat and Mass Transfer, 2013, 56(1-2):741-749.
[10] 王飞, 杨珏, 顾汉洋, 等. 垂直管内超临界水传热实验研究[J]. 原子能科学技术, 2013, 47(6):933-939. WANG F, YANG Y, GU H Y, et al. Experimental research on heat transfer performance of supercritical water in vertical tube[J]. Atomic Energy Science and Technology, 2013, 47(6):933-939. (in Chinese)
[11] ANKUDINOV V B, KURGANOV V A. Intensification of deteriorated heat transfer in heated tubes at supercritical pressures[J]. High Temperature, 1981, 19(6):870-874.
[12] BAE Y Y, KIM H Y, YOO T H. Effect of a helical wire on mixed convection heat transfer to carbon dioxide in a vertical circular tube at supercritical pressures[J]. International Journal of Heat and Fluid Flow, 2011, 32(1):340-351.
[13] WANG J G, LI H X, GUO B, et al. Investigation of forced convection heat transfer of supercritical pressure water in a vertically upward internally ribbed tube[J]. Nuclear Engineering and Design, 2009, 239(10):1956-1964.
[14] LI H Z, WANG H J, LUO Y S, et al. Experimental investigation on heat transfer from a heated rod with a helically wrapped wire inside a square vertical channel to water at supercritical pressures[J]. Nuclear Engineering and Design, 2009, 239(10):2004-2012.
[15] LI Z H, WU Y X, TANG G L, et al. Numerical analysis of buoyancy effect and heat transfer enhancement in flow of supercritical water through internally ribbed tubes[J]. Applied Thermal Engineering, 2016, 98:1080-1090.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn