Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (1): 66-72    DOI: 10.16511/j.cnki.qhdxxb.2018.22.042
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
各向异性高强钢成形极限曲线有限元预测
桂良进, 张晓前, 周驰, 范子杰
清华大学 汽车安全与节能国家重点实验室, 北京 100084
Finite element prediction of the forming limit curve for anisotropic high-strength steel
GUI Liangjin, ZHANG Xiaoqian, ZHOU Chi, FAN Zijie
State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
全文: PDF(6718 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 采用高强钢是实现汽车轻量化的有效途径之一,而成形极限曲线是用于判断金属板料成形效果的有效工具之一。为了降低实验成本、缩短开发周期,该文提出了一种考虑各向异性,以最大凸模力准则作为失稳判据,对高强钢Q490C的成形极限曲线进行仿真预测的方法。使用相应公式对仿真数据进行了拟合。仿真结果与试验数据得到的模型拟合曲线吻合得较好。将有限元预测得到的成形极限曲线的截距点与Keeler公式进行对比,二者一致性较好。该文采用的成形极限曲线的有限元预测方法可以较准确地预测各向异性板料的成形极限曲线,为板料冲压成形等后续工作奠定基础。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
桂良进
张晓前
周驰
范子杰
关键词 成形极限曲线有限元预测试验Keeler公式    
Abstract:High-strength steel is an effective way to reduce automobile masses, with the forming limit curve of the steel as an important tool for evaluating the sheet metal forming. A forming limit curve simulation prediction method for the anisotropic high-strength steel Q490C is given here based on the maximum punch force criterion to reduce experiment costs and shorten the development cycle. The results are then fit to correlations. The simulations agree well with experimental data. The simulated curve intercept agrees well with the Keeler's formula. Thus, the finite element predictions of the forming limit curve used in this paper can accurately predict the forming limit curve for anisotropic sheets, which lays a foundation for blank stamping forming.
Key wordsforming limit curve    finite element prediction    experiment    Keeler's formula
收稿日期: 2018-02-08      出版日期: 2019-01-16
基金资助:国家自然科学基金资助项目(51475255)
通讯作者: 范子杰,教授,E-mail:zjfan@tsinghua.edu.cn     E-mail: zjfan@tsinghua.edu.cn
引用本文:   
桂良进, 张晓前, 周驰, 范子杰. 各向异性高强钢成形极限曲线有限元预测[J]. 清华大学学报(自然科学版), 2019, 59(1): 66-72.
GUI Liangjin, ZHANG Xiaoqian, ZHOU Chi, FAN Zijie. Finite element prediction of the forming limit curve for anisotropic high-strength steel. Journal of Tsinghua University(Science and Technology), 2019, 59(1): 66-72.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2018.22.042  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I1/66
  图1 FLC试验试件尺寸示意图
  图2 成形极限曲线仿真模具示意图
  图3 (网络版彩图)成形极限曲线仿真有限元模型
  图4 板料有限元模型示意图
  图5 凹模有限元模型示意图
  图6 压边圈有限元模型示意图
  图7 凸模有限元模型示意图
  表1 试验测试结果统计
  图8 凸模力 时间曲线
  图9 板料失稳时截面线上的第1主应变分布
  图10 (网络版彩图)FLC试验机与试件
  图11 FLC试验数据和拟合模型曲线
  图12 (网络版彩图)试件有限元仿真 Mises等 效应力云图
  图13 (网络版彩图)试件有限元仿真等效塑性应变云图
  图14 (网络版彩图)试件有限元仿真减薄率云图
  图15 试验拟合成形极限曲线与仿真对比图
  图16 各向同性材料与各向异性材料仿真对比
[1] LI Y X, LIN Z Q, JIANG A Q, et al. Use of high strength steel sheet for lightweight and crashworthy car body[J]. Materials & Design, 2003, 24(3):177-182.
[2] 范子杰, 桂良进, 苏瑞意. 汽车轻量化技术的研究与进展[J]. 汽车安全与节能学报, 2014, 5(1):1-16. FAN Z J, GUI L J, SU R Y. Research and development of automotive lightweight technology[J]. Journal of Automotive Safety and Energy, 2014, 5(1):1-16. (in Chinese)
[3] ZHANG Y, LAI X M, ZHU P, et al. Lightweight design of automobile component using high strength steel based on dent resistance[J]. Materials & Design, 2006, 27(1):64-68.
[4] KEELER S P, BACKHOFEN W A. Plastic instability and fracture in sheet stretched over rigid punches[J]. ASM Transactions Quarterly, 1964, 56:25-48.
[5] GOODWIN G M. Application of strain analysis to sheet metal forming problems in the press shop[R]. SAE Paper, No. 680093. Warrendale, USA:SAE, 1968.
[6] BANABIC D, LAZARESCU L, PARAIANU L, et al. Development of a new procedure for the experimental determination of the forming limit curves[J]. CIRP Annals, 2013, 62(1):255-258.
[7] 卢志文, 汪凌云, 邱晓刚, 等. 镁合金板材成形极限图(FLD)的实验研究[J]. 材料导报, 2005, 19(6):108-110. LU Z W, WANG L Y, QIU X G, et al. Experiment research on the forming limit diagrams (FLD) of magnesium alloy sheet[J]. Materials Review, 2005, 19(6):108-110. (in Chinese)
[8] NARAYANASAMY R, NARAYANAN C S. Forming, fracture and wrinkling limit diagram for if steel sheets of different thickness[J]. Materials & Design, 2008, 29(7):1467-1475.
[9] MOSHKSAR M M, MANSORZADEH S. Determination of the forming limit diagram for Al 3105 sheet[J]. Journal of Materials Processing Technology, 2003, 141(1):138-142.
[10] PARMAR A, MELLOR P B. Predictions of limit strains in sheet metal using a more general yield criterion[J]. International Journal of Mechanical Sciences, 1978, 20(6):385-391.
[11] KURODA M, TVERGAARD V. Forming limit diagrams for anisotropic metal sheets with different yield criteria[J]. International Journal of Solids and Structures, 2000, 37(37):5037-5059.
[12] KOROUYEH R S, NAEINI H M, LIAGHAT G. Forming limit diagram prediction of tailor-welded blank using experimental and numerical methods[J]. Journal of Materials Engineering and Performance, 2012, 21(10):2053-2061.
[13] SITU Q, JAIN M K, METZGER D R. Determination of forming limit diagrams of sheet materials with a hybrid experimental-numerical approach[J]. International Journal of Mechanical Sciences, 2011, 53(9):707-719.
[14] DJAVANROODI F, DEROGAR A. Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets[J]. Materials & Design, 2010, 31(10):4866-4875.
[15] ASSEMPOUR A, NURCHESHMEH M. The influence of material properties on the shape and level of the forming limit diagram[R/OL]. (2003-01-11). https://doi.org/10.4271/2003-01-1149.
[16] CAMPOS H B, BUTUC M C, GRÁCIO J J, et al. Theorical and experimental determination of the forming limit diagram for the AISI 304 stainless steel[J]. Journal of Materials Processing Technology, 2006, 179(1-3):56-60.
[17] SAMUEL M. Numerical and experimental investigations of forming limit diagrams in metal sheets[J]. Journal of Materials Processing Technology, 2004, 153-154:424-431.
[18] BONG H J, BARLAT F, LEE M G, et al. The forming limit diagram of ferritic stainless steel sheets:Experiments and modeling[J]. International Journal of Mechanical Sciences, 2012, 64(1):1-10.
[19] BARLAT F, LIAN K. Plastic behavior and stretchability of sheet metals. Part I:A yield function for orthotropic sheets under plane stress conditions[J]. International Journal of Plasticity, 1989, 5(1):51-66.
[20] OLEKSIK V, BREAZ R E, PASCU A M. Finite element method simulation for rectangular parts obtained by incremental sheet metal forming process[C]//Proceedings of the 15th International Conference on Manufacturing Systems. Bucharest, Romania:Editura Academiei Române, 2006.
[21] JURENDIĆ S, GAIANI S. Deep drawing simulation of α-titanium alloys using LS-DYNA[C]//Proceedings of the 8th European LS-DYNA Users Conference. Strasbourg, France, 2011.
[22] BUTUC M C, DA ROCHA A B, GRACIO J J, et al. A more general model for forming limit diagrams prediction[J]. Journal of Materials Processing Technology, 2002, 125-126:213-218.
[23] 王辉. 成形极限图的获取方法与其在金属板料成形中的应用[D]. 南京:南京航空航天大学, 2011. WANG H. Acquisition method of forming limit diagram and its application in sheet metal forming[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese)
[24] 张成祥, 陈明和, 雷晓晶, 等. GH163合金成形极限图及应用[J]. 塑性工程学报, 2016, 23(1):93-98. ZHANG C X, CHEN M H, LEI X J, et al. Forming limit diagram of superalloy GH163 sheet and application[J]. Journal of Plasticity Engineering, 2016, 23(1):93-98. (in Chinese)
[1] 宫恩宇, 陈松贵, 陈鑫, 张凯豪, 管大为, 郑金海. 波浪条件下单桩冲刷大比尺试验研究[J]. 清华大学学报(自然科学版), 2024, 64(4): 619-625.
[2] 吴卓, 张文博, 王治国, 冯佳瑞, 任雅丽. 一种大型冲压式翼伞的设计与试验[J]. 清华大学学报(自然科学版), 2023, 63(3): 348-355.
[3] 王奇, 蒋伟, 王文强, 雷江利, 张章, 赵淼. 材料弹性对降落伞充气展开力学性能影响[J]. 清华大学学报(自然科学版), 2023, 63(3): 356-366.
[4] 董强, 陈强, 黄科, 邢伟, 沈兵. 航天器低重力模拟试验平台三维随动系统[J]. 清华大学学报(自然科学版), 2023, 63(3): 449-460.
[5] 杨智勇, 王子鸣, 叶珊珊, 李志强, 李卫京. 基于多尺度制动试验的制动噪声特性及仿真分析方法[J]. 清华大学学报(自然科学版), 2023, 63(10): 1626-1639.
[6] 王卫, 王百智, 陈松贵, 闫俊义, 金峰, 江朝华. 海上风电单桩胶结抛石体防冲刷措施模型试验研究[J]. 清华大学学报(自然科学版), 2022, 62(9): 1401-1407.
[7] 韩亚东, 谭磊, 刘亚斌. 基于可控载荷的混流泵叶轮设计及试验研究[J]. 清华大学学报(自然科学版), 2022, 62(12): 1930-1937.
[8] 李庆伟, 李辉, 姜鹏, 姚蕊, 潘高峰. FAST馈源支撑钢索及舱索连接锚具役后剩余承载力研究[J]. 清华大学学报(自然科学版), 2022, 62(11): 1758-1763,1779.
[9] 窦子豪, 赵志宏, 高天阳, 李津津, 杨强. 水岩作用下花岗岩裂隙剪切力学特性演化规律[J]. 清华大学学报(自然科学版), 2021, 61(8): 792-798.
[10] 李晓伟, 吴莘馨, 张作义, 赵加清, 雒晓卫. 高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J]. 清华大学学报(自然科学版), 2021, 61(4): 329-337.
[11] 程晓辉, 赵乃峰, 王浩, 张志超. 清华热力学岩土模型与能源地下结构有限元模拟[J]. 清华大学学报(自然科学版), 2020, 60(9): 707-714.
[12] 王言然, 孔纲强, 沈扬, 孙智文, 王新越, 肖涵宇. 热干扰下能量桩热力特性现场试验研究[J]. 清华大学学报(自然科学版), 2020, 60(9): 733-739.
[13] 陈志华,温锁林,刘红波,王小盾,高昊天,王留成,朱邵宁. 北京大兴国际机场鼓形焊接空心球节点力学性能[J]. 清华大学学报(自然科学版), 2020, 60(12): 967-976.
[14] 廖海黎, 马存明, 李明水, 孟凡超. 港珠澳大桥的结构抗风性能[J]. 清华大学学报(自然科学版), 2020, 60(1): 41-47.
[15] 常旭, 杨东超, 孙可平, 朱衡, 杨淇耀. 爬行器驱动轮正压过程分析[J]. 清华大学学报(自然科学版), 2019, 59(7): 537-543.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn