Abstract:High-strength steel is an effective way to reduce automobile masses, with the forming limit curve of the steel as an important tool for evaluating the sheet metal forming. A forming limit curve simulation prediction method for the anisotropic high-strength steel Q490C is given here based on the maximum punch force criterion to reduce experiment costs and shorten the development cycle. The results are then fit to correlations. The simulations agree well with experimental data. The simulated curve intercept agrees well with the Keeler's formula. Thus, the finite element predictions of the forming limit curve used in this paper can accurately predict the forming limit curve for anisotropic sheets, which lays a foundation for blank stamping forming.
[1] LI Y X, LIN Z Q, JIANG A Q, et al. Use of high strength steel sheet for lightweight and crashworthy car body[J]. Materials & Design, 2003, 24(3):177-182. [2] 范子杰, 桂良进, 苏瑞意. 汽车轻量化技术的研究与进展[J]. 汽车安全与节能学报, 2014, 5(1):1-16. FAN Z J, GUI L J, SU R Y. Research and development of automotive lightweight technology[J]. Journal of Automotive Safety and Energy, 2014, 5(1):1-16. (in Chinese) [3] ZHANG Y, LAI X M, ZHU P, et al. Lightweight design of automobile component using high strength steel based on dent resistance[J]. Materials & Design, 2006, 27(1):64-68. [4] KEELER S P, BACKHOFEN W A. Plastic instability and fracture in sheet stretched over rigid punches[J]. ASM Transactions Quarterly, 1964, 56:25-48. [5] GOODWIN G M. Application of strain analysis to sheet metal forming problems in the press shop[R]. SAE Paper, No. 680093. Warrendale, USA:SAE, 1968. [6] BANABIC D, LAZARESCU L, PARAIANU L, et al. Development of a new procedure for the experimental determination of the forming limit curves[J]. CIRP Annals, 2013, 62(1):255-258. [7] 卢志文, 汪凌云, 邱晓刚, 等. 镁合金板材成形极限图(FLD)的实验研究[J]. 材料导报, 2005, 19(6):108-110. LU Z W, WANG L Y, QIU X G, et al. Experiment research on the forming limit diagrams (FLD) of magnesium alloy sheet[J]. Materials Review, 2005, 19(6):108-110. (in Chinese) [8] NARAYANASAMY R, NARAYANAN C S. Forming, fracture and wrinkling limit diagram for if steel sheets of different thickness[J]. Materials & Design, 2008, 29(7):1467-1475. [9] MOSHKSAR M M, MANSORZADEH S. Determination of the forming limit diagram for Al 3105 sheet[J]. Journal of Materials Processing Technology, 2003, 141(1):138-142. [10] PARMAR A, MELLOR P B. Predictions of limit strains in sheet metal using a more general yield criterion[J]. International Journal of Mechanical Sciences, 1978, 20(6):385-391. [11] KURODA M, TVERGAARD V. Forming limit diagrams for anisotropic metal sheets with different yield criteria[J]. International Journal of Solids and Structures, 2000, 37(37):5037-5059. [12] KOROUYEH R S, NAEINI H M, LIAGHAT G. Forming limit diagram prediction of tailor-welded blank using experimental and numerical methods[J]. Journal of Materials Engineering and Performance, 2012, 21(10):2053-2061. [13] SITU Q, JAIN M K, METZGER D R. Determination of forming limit diagrams of sheet materials with a hybrid experimental-numerical approach[J]. International Journal of Mechanical Sciences, 2011, 53(9):707-719. [14] DJAVANROODI F, DEROGAR A. Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets[J]. Materials & Design, 2010, 31(10):4866-4875. [15] ASSEMPOUR A, NURCHESHMEH M. The influence of material properties on the shape and level of the forming limit diagram[R/OL]. (2003-01-11). https://doi.org/10.4271/2003-01-1149. [16] CAMPOS H B, BUTUC M C, GRÁCIO J J, et al. Theorical and experimental determination of the forming limit diagram for the AISI 304 stainless steel[J]. Journal of Materials Processing Technology, 2006, 179(1-3):56-60. [17] SAMUEL M. Numerical and experimental investigations of forming limit diagrams in metal sheets[J]. Journal of Materials Processing Technology, 2004, 153-154:424-431. [18] BONG H J, BARLAT F, LEE M G, et al. The forming limit diagram of ferritic stainless steel sheets:Experiments and modeling[J]. International Journal of Mechanical Sciences, 2012, 64(1):1-10. [19] BARLAT F, LIAN K. Plastic behavior and stretchability of sheet metals. Part I:A yield function for orthotropic sheets under plane stress conditions[J]. International Journal of Plasticity, 1989, 5(1):51-66. [20] OLEKSIK V, BREAZ R E, PASCU A M. Finite element method simulation for rectangular parts obtained by incremental sheet metal forming process[C]//Proceedings of the 15th International Conference on Manufacturing Systems. Bucharest, Romania:Editura Academiei Române, 2006. [21] JURENDIĆ S, GAIANI S. Deep drawing simulation of α-titanium alloys using LS-DYNA[C]//Proceedings of the 8th European LS-DYNA Users Conference. Strasbourg, France, 2011. [22] BUTUC M C, DA ROCHA A B, GRACIO J J, et al. A more general model for forming limit diagrams prediction[J]. Journal of Materials Processing Technology, 2002, 125-126:213-218. [23] 王辉. 成形极限图的获取方法与其在金属板料成形中的应用[D]. 南京:南京航空航天大学, 2011. WANG H. Acquisition method of forming limit diagram and its application in sheet metal forming[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2011. (in Chinese) [24] 张成祥, 陈明和, 雷晓晶, 等. GH163合金成形极限图及应用[J]. 塑性工程学报, 2016, 23(1):93-98. ZHANG C X, CHEN M H, LEI X J, et al. Forming limit diagram of superalloy GH163 sheet and application[J]. Journal of Plasticity Engineering, 2016, 23(1):93-98. (in Chinese)