Abstract:The trajectory error of the tool center point in a six-axis computer numerical control (CNC) machine tool was minimized by switching the multiple linkage modes. A kinematic model of the six-axis linkage CNC machine tool was used to analyze the redundant linkages and redundant rotational linkages of the machine tool. The redundant linkage characteristics were then used to identify the linkage modes and linkage axes that provided the desired tool motion. A trajectory error model for the tool center point was used to switch the linkage modes and linkage axes to minimize the error. Tests on a CNC machine tool show that the model accurately predicts how to switch the linkage modes to minimize the tool center point trajectory error.
[1] 郭辉, 赵宁, 项云飞, 等. 六轴数控蜗杆砂轮磨齿机磨削面齿轮的方法[J]. 机械工程学报, 2015, 51(11): 186-194. GUO H, ZHAO N, XIANG Y F, et al. Face gear grinding method using six-axis CNC worm wheel machine[J]. Chinese Journal of Mechanical Engineering, 2015, 51(11): 186-194. (in Chinese) [2] HAN J, WU L L, YUAN B, et al. A novel gear machining CNC design and experimental research[J]. The International Journal of Advanced Manufacturing Technology, 2017, 88(5-8): 1711-1722. [3] 梁斌焱, 许先雨, 龚时华, 等. 三维T形焊缝的双光束激光焊接及其焊缝跟踪控制[J]. 焊接学报, 2016, 37(2): 47-51. LIANG B Y, XU X Y, GONG S H, et al. Dual-beam laser welding and seam tracking control technology for 3D T-beam[J]. Transactions of the China Welding Institution, 2016, 37(2): 47-51. (in Chinese) [4] 赵万生, 李论, 李志勇. 六轴联动电火花加工数控系统的研究[J]. 计算机集成制造系统, 2004, 10(10): 1263-1268. ZHAO W S, LI L, LI Z Y. Research on six-axis numerical control system for EDM[J]. Computer Integrated Manufacturing Systems, 2004, 10(10): 1263-1268. (in Chinese) [5] AHMARN M, STANISLAV S M. Optimization of rotations for six-axis machining[J]. The International Journal of Advanced Manufacturing Technology, 2011, 53(5-8): 435-451. [6] WANG J T, ZHANG D H, WU B H, et al. Kinematic analysis and feedrate optimization in six-axis NC abrasive belt grinding of blades[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(1-4): 405-414. [7] 董超杰, 樊曙天. 五轴联动数控机床非线性误差的研究[J]. 组合机床与自动化加工技术, 2012(7): 85-88. DONG C J. FAN S T. Research of non-linear error for five-axis NC machine[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2012(7): 85-88. (in Chinese) [8] DING S, HUANG X D, YU C J. Post processing for five-axis machine tools with pose error compensation[J]. Advanced Materials Research, 2014, 1037: 283-287. [9] ZHANG K, ZHANG L Q, YAN Y C. Single spherical angle linear interpolation for the control of non-linearity errors in five-axis flank milling[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87(9-12): 1-11. [10] 周济, 周艳红. 数控加工技术[M]. 北京: 国防工业出版社, 2000. ZHOU J, ZHOU Y H. Technology of NC machining[M]. Beijing: National Defense Industry Press, 2000. (in Chinese) [11] 周凯. PC数控原理、系统及应用[M]. 北京: 机械工业出版社, 2003. ZHOU K. PC-based numerical control principle, system and applications[M]. Beijing: China Machine Press, 2003. (in Chinese) [12] 陈义. 铝轮毂曲面成套机械抛光技术研究[D]. 武汉: 华中科技大学, 2010. CHEN Y. Research on complete sets of mechanical polishing technology for aluminum wheel hub surface[D]. Wuhan: Huazhong University of Science & Technology, 2010. (in Chinese) [13] 聂蒙, 李建勇, 沈海阔. 基于容腔调节的钢轨打磨压力控制系统[J]. 西南交通大学学报, 2015, 50(5): 798-802. NIE M, LI J Y, SHEN H K. Pressure control system for rail grinding based on chamber adjustment[J]. Journal of Southwest Jiaotong University, 2015, 50(5): 798-802. (in Chinese) [14] WANG R Q, LI J Y, LIU Y M, et al. Modeling material removal rate of heavy belt-grinding in manufacturing of U71Mn material[J]. Key Engineering Materials, 2016, 693: 1082-1089. [15] LI H Y, LI X K, TIAN C C, et al. The simulation and experimental study of glossiness formation in belt sanding and polishing processes[J]. The International Journal of Advanced Manufacturing Technology, 2017, 90(1-4): 199-209.