Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (6): 425-431    DOI: 10.16511/j.cnki.qhdxxb.2019.26.006
  航空航天与工程力学 本期目录 | 过刊浏览 | 高级检索 |
高温数字图像相关方法中的制斑和图像处理技术
段淇元1,3, 宫文然2, 郭保桥3, 吴立夫4, 于兴哲1, 谢惠民1
1. 清华大学 航天航空学院, 北京 100084;
2. 北京强度环境研究所, 北京 100076;
3. 北京理工大学 爆炸科学与技术国家重点实验室 北京 100081;
4. 北京宇航系统工程研究所, 100076
Techniques of speckle fabrication and imgae processing for high temperature digital image correlation
DUAN Qiyuan1,3, GONG Wenran2, GUO Baoqiao3, WU Lifu4, YU Xingzhe1, XIE Huimin1
1. School of Aerospace Engineering, Tsinghua University, Beijing 100084, China;
2. Beijing Institute of Structure and Environment Engineering, Beijing 100076, China;
3. State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
4. Beijing Institute of Astronautical Systems Engineering, Beijing 100076, China
全文: PDF(4995 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 结合数字图像相关(digital image correlation,DIC)方法高温应用的需求,该文重点对散斑制备技术和高温散斑图像处理技术进行了研究。首先,以高温结构材料为对象,研发了一种基于参数化模板的高温散斑制作工艺。该工艺基于参数化模板,可调整模板中散斑颗粒大小、分布密度和分布随机度等多个参数,成功地在C-SiC复合材料基底上制备出可耐1 200℃高温散斑载体。其次,分析了热气流、热辐射对DIC测量结果的影响,结合图像灰度平均方法、循环高温炉外热气流和光学滤波法等3种手段进行高温散斑图像的修正,并通过热膨胀系数测量实验验证了修正方法的可行性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
段淇元
宫文然
郭保桥
吴立夫
于兴哲
谢惠民
关键词 高温数字图像相关热气流热辐射散斑    
Abstract:According to requirement of the high-temperature application from the digital image correlation (DIC) method, the speckle fabrication methods and high-temperature speckle image processing technique are studied in this paper. Taking high-temperature structural materials as the studied objects, a high-temperature speckle fabrication technique based on parametric template is developed. The technique is mainly based on a parametric template, which can adjust the parameters such as particle size, distribution density, and randomness in the template. As a result, the quality of the speckle can be optimized. A high-temperature speckle pattern was successful fabricated on the C-SiC composite substrate by the proposed technique, and the experiment verifies the speckle carrier can endure high temperature up to 1 200℃. At the same time, the influence factors of thermal disturbance and thermal radiation on DIC measurement results are analyzed. The high-temperature speckle images are corrected with approaches of image grayscale-average, circulating thermal disturbance and optical filtering method. And a test for measuring the thermal expansion coefficient is designed to verify the feasibility of the correction methods.
Key wordshigh temperature    digital image correlation    thermal disturbance    thermal radiation, speckle pattern
收稿日期: 2018-12-05      出版日期: 2019-06-01
通讯作者: 谢惠民,教授,E-mail:xiehm@tsinghua.edu.cn     E-mail: xiehm@tsinghua.edu.cn
引用本文:   
段淇元, 宫文然, 郭保桥, 吴立夫, 于兴哲, 谢惠民. 高温数字图像相关方法中的制斑和图像处理技术[J]. 清华大学学报(自然科学版), 2019, 59(6): 425-431.
DUAN Qiyuan, GONG Wenran, GUO Baoqiao, WU Lifu, YU Xingzhe, XIE Huimin. Techniques of speckle fabrication and imgae processing for high temperature digital image correlation. Journal of Tsinghua University(Science and Technology), 2019, 59(6): 425-431.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.006  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I6/425
  图1 光纤激光打标机
  图2 散斑制备流程图
  图3 散斑模板矢量图及制斑结果
  图4 (网络版彩图)刚体平移仿真实验结果
  图5 (网络版彩图)刚体旋转仿真实验结果
  图6 DIC测量基本原理
  图7 实验装置
  图8 灰度平均图像数与平均应变及标准差的关系
  图9 空气循环和滤波片与应变均值和标准差的关系
  图10 800℃ 高温下采集的的散斑图
  表1 修正方法的效果
  图11 GH4169试件表面散斑图
  图12 升温曲线
  图13 热膨胀系数的理论值和实验值对比
[1] 杨亚政, 李松年, 杨嘉陵. 高超音速飞行器及其关键技术简论[J]. 力学进展, 2007, 37(4):537-550.YANG Y Z, LI S N, YANG J L. A review on hypersonic vehicles and key technologies[J]. Advances in Mechanics, 2007, 37(4):537-550. (in Chinese)
[2] 王伟. 数字图像相关方法在热结构材料高温变形测试中的应用[D]. 哈尔滨:哈尔滨工业大学, 2014.WANG W. The application of digital image correlation method on high-temperature deformation test of thermal structure material[D]. Harbin:Harbin Institute of Technology, 2014. (in Chinese)
[3] 潘兵. 数字图像相关方法及其在实验力学中的应用[D]. 北京:清华大学, 2007.PAN B. Research on digital image correlation with its application in experimental mechanics[D]. Beijing:Tsinghua University, 2007. (in Chinese)
[4] 潘兵, 吴大方, 高镇同, 等. 1200℃高温热环境下全场变形的非接触光学测量方法研究[J]. 强度与环境, 2011, 38(1):52-59.PAN B, WU D F, GAO Z T, et al. Study of non-contact optical metrology for full-field deformation measurement at 1200℃[J]. Structure & Environment Engineering, 2011, 38(1):52-59. (in Chinese)
[5] GUO X, LIANG J, TANG Z Z, et al. High-temperature digital image correlation method for full-field deformation measurement captured with filters at 2600℃ using spraying to form speckle patterns[J]. Optical Engineering, 2014, 53(6), 063101.
[6] DONG Y L, PAN B. A review of speckle pattern fabrication and assessment for digital image correlation[J]. Experimental Mechanics, 2017, 57(8):1161-1181.
[7] LYONS J S, LIU J, SUTTON M A. High-temperature deformation measurements using digital-image correlation[J]. Experimental Mechanics, 1996, 36(1):64-70.
[8] 潘兵, 吴大方. 基于带通滤波成像的高温数字图像相关方法[J]. 光学学报, 2011, 31(2), 0212001.PAN B, WU D F. High-temperature digital image correlation method based on optical band-pass filtering imaging[J]. Acta Optica Sinica, 2011, 31(2), 0212001. (in Chinese)
[9] 苏勇, 张青川. 数字图像相关的噪声导致系统误差及散斑质量评价标准[J]. 实验力学, 2017, 32(5), 699-717.SU Y, ZHANG Q C. Noise-induced bias and evaluation criterion of speckle quality in digital image corelation[J]. Journal of Experimental Mechanics, 2017, 32(5), 699-717. (in Chinese)
[10] 潘兵, 吴大方, 夏勇. 数字图像相关方法中散斑图的质量评价研究[J]. 实验力学, 2010, 25(2):120-129.PAN B, WU D F, XIA Y. Study of speckle pattern quality assessment used in digital image correlation[J]. Journal of Experimental Mechanics, 2010, 25(2):120-129. (in Chinese)
[11] PAN B, WU D F, WANG Z Y, et al. High-temperature digital image correlation method for full-field deformation measurement at 1200℃[J]. Measurement Science and Technology, 2011, 22(1), 015701.
[12] SU Y Q, YAO X F, WANG S, et al. Improvement on measurement accuracy of high-temperature DIC by grayscale-average technique[J]. Optics and Lasers in Engineering, 2015, 75:10-16.
[13] 吴立夫. 基于双棱镜的单相机三维数字图像相关方法的研究[D]. 北京:清华大学, 2017.WU L F. Research on the bi-prism-based single lens three-dimensional digital image correlation method[D]. Beijing:Tsinghua University, 2017. (in Chinese)
[14] 杨娇. 热障涂层高温CMAS腐蚀应变场的DIC表征与分析[D]. 湘潭:湘潭大学, 2016.YANG J. Strain characterization and analysis of thermal barrier coatings induced by molten cmas using DIC[D]. Xiangtan:Xiangtan University, 2016.
[15] EVANGELIDIS G D, PSARAKIS E Z. Parametric image alignment using enhanced correlation coefficient maximization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(10):1858-1865.
[16] 陈静静. 基于高速DIC方法的脆性材料动态力学性能研究[D]. 北京:北京理工大学, 2014.CHEN J J. Study on the dynamic mechanical properties of brittle materials by high-speed DIC[D]. Beijing:Beijing Institute of Technology, 2014. (in Chinese)
[17] JONES E M C, REU P L. Distortion of digital image correlation (DIC) displacements and strains from heat waves[J]. Experimental Mechanics, 2018, 58(7):1133-1156.
[18] RYBICKI G B, LIGHTMAN A P. Radiative processes in astrophysics[M]. New York:Wiley, 1979.
[19] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 金属材料热膨胀特征参数的测定:GB/T 4339-2008[S]. 北京:中国标准出版社, 2009.General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Test methods for thermal expansion characteristic parameters of metallic materials:GB/T 4339-2008[S]. Beijing:Standards Press of China, 2009. (in Chinese)
[20] 《中国航空材料手册》编辑委员会. 中国航空材料手册(第2卷)[M]. 北京:中国标准出版社, 2001.Editorial Committee of China Aeronautical Materials Handbook. China Aeronautical Materials Handbook (Vol.2)[M]. Beijing:China Standards Press, 2001. (in Chinese)
[1] 史琳, 许强辉. 稠油注空气开发技术的基础研究与应用[J]. 清华大学学报(自然科学版), 2022, 62(4): 722-734.
[2] 孙静, 吴君怡, 赵秀丽. 高温后密肋复合墙体框格单元损伤[J]. 清华大学学报(自然科学版), 2022, 62(2): 285-293.
[3] 黄伟灿, 蒋晓华, 薛芃, 李欣阳, 沈稚栋, 孙宇光. 超导直流能源管道载流导体设计[J]. 清华大学学报(自然科学版), 2022, 62(10): 1715-1720.
[4] 史力, 赵加清, 刘兵, 李晓伟, 雒晓卫, 张征明, 张平, 孙立斌, 吴莘馨. 高温气冷堆关键材料技术发展战略[J]. 清华大学学报(自然科学版), 2021, 61(4): 270-278.
[5] 李晓伟, 吴莘馨, 张作义, 赵加清, 雒晓卫. 高温气冷堆示范工程螺旋管式直流蒸汽发生器工程验证试验[J]. 清华大学学报(自然科学版), 2021, 61(4): 329-337.
[6] 王捷, 王宏, 赵钢, 杨小勇, 叶萍, 曲新鹤. 高温气冷堆氦气透平压气机和主氦风机研究进展[J]. 清华大学学报(自然科学版), 2021, 61(4): 350-360.
[7] 刘仁杰, 孙跃文, 刘锡明, 苗积臣, 周立业, 丛鹏. 基于螺旋CT的高温气冷堆石墨构件及碳砖缺陷检测方法[J]. 清华大学学报(自然科学版), 2021, 61(4): 367-376.
[8] 孙世妍, 张佑杰, 郑艳华, 夏冰. HTR-10超高温运行堆芯温度场分析[J]. 清华大学学报(自然科学版), 2021, 61(11): 1301-1307.
[9] 孙斐然, 丁雨林, 孙振国, 陈强, MURAYAMA Riichi. 基于缓冲波导的T(0,1)模态导波激励方法实验研究[J]. 清华大学学报(自然科学版), 2018, 58(8): 740-745.
[10] 徐晓娜, 黄晓津. 高温气冷堆核电站计算机化规程流程的建模和验证[J]. 清华大学学报(自然科学版), 2018, 58(7): 658-663.
[11] 明亮, 杨小勇, 张佑杰, 王捷, 傅林, 李珊, 王琦. 叶顶间隙与轴向间隙对氦气压气机气动特性的影响[J]. 清华大学学报(自然科学版), 2017, 57(8): 832-837.
[12] 张竞宇, 李富, 孙玉良. 球床高温气冷堆初装堆芯的物理计算方法及验证[J]. 清华大学学报(自然科学版), 2017, 57(4): 405-409.
[13] 付明, 翁文国, 韩雪峰. 高温下防护服热阻和湿阻的暖体假人实验[J]. 清华大学学报(自然科学版), 2017, 57(3): 281-285,292.
[14] 曲新鹤, 杨小勇, 王捷. 商用高温气冷堆氦气透平循环发电热力学参数分析和优化[J]. 清华大学学报(自然科学版), 2017, 57(10): 1114-1120.
[15] 胡福生, 张磊, 林峰. 大口径阀门阀体多向模锻成形的模具优化设计[J]. 清华大学学报(自然科学版), 2016, 56(6): 646-649,655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn