Abstract:Robotic drilling and riveting systems use visualization to precisely position the workpiece and for quality assurance. This paper describes a multi-step method to improve the visual detection accuracy of the reference and connection holes. A pixel-level edge point set based on the Canny operator is used first for coarse positioning of the circular hole. The edge parameters of the three-grey transition model are accurately derived using four Zernike orthogonal moments for the region of interest around the hole to be detected. Then, the relationships between the edge parameters and thresholds is used to calculate the subpixel coordinates of the edge points. A least squares analysis is then used to detect the center location and hole radius. Simulations show that the error in the center coordinates is approximately 0.01 pixels and that of the radius is 0.1 pixels, which is higher detection accuracy than the traditional algorithm. The system works for various size holes and is less sensitive to noise. Thus, this method effectively improves the detection precision of circular holes, which is important in robotic drilling and riveting visual measurement systems.
[1] APARECIDO EGUTI C C, TRABASSO L G. Design of a robotic orbital driller for assembling aircraft structures[J]. Mechatronics, 2014, 24(5):533-545. [2] ZHAN Q. Hand-eye calibration and positioning for a robot drilling system[J]. International Journal of Advanced Manufacturing Technology, 2012, 61(5-8):691-701. [3] ZHU W, MEI B, YAN G, et al. Measurement error analysis and accuracy enhancement of 2D vision system for robotic drilling[J]. Robotics & Computer Integrated Manufacturing, 2014, 30(2):160-171. [4] MEI B, ZHU W, YAN G, et al. A new elliptic contour extraction method for reference hole detection in robotic drilling[J]. Pattern Analysis and Applications, 2015, 18(3):695-712. [5] 毕运波, 徐超, 樊新田, 等. 基于视觉测量的沉头孔垂直度检测方法[J]. 浙江大学学报(工学版), 2017, 51(2):312-318.BI Y B, XU C, FAN X T, et al. Method of countersink perpendicularity detection using vision measurement[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(2):312-318. (in Chinese) [6] 李欣, 刘美秀, 刘迪. 复杂背景下高层建筑钢结构板孔心影像坐标量测[J]. 武汉大学学报(工学版), 2016, 49(1):143-147.LI X, LIU M X, LIU D. Measurement of image coordinates of hole center in steel structure plate under complex background[J]. Engineering Journal of Wuhan University, 2016, 49(1):143-147. (in Chinese) [7] KAUR J, AGRAWAL S, VIG R. A comparative analysis of thresholding and edge detection segmentation techniques[J]. International Journal of Computer Applications, 2012, 39(15):29-34. [8] DING K, XIAO L, WENG G. Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian energy for image segmentation[J]. Signal Processing, 2017, 134:224-233. [9] DA F, ZHANG H. Sub-pixel edge detection based on an improved moment[J]. Image & Vision Computing, 2010, 28(12):1645-1658. [10] LYVERS E P, MITCHELL O R, AKEY M L, et al. Subpixel measurements using a moment-based edge operator[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1989, 11(12):1293-1309. [11] GHOSAL S, MEHROTRA R. Orthogonal moment operators for subpixel edge detection[J]. Pattern Recognition, 1993, 26(2):295-306. [12] 李金泉, 王建伟, 陈善本, 等. 一种改进的Zernike正交矩亚像素边缘检测算法[J]. 光学技术, 2003, 29(4):500-503.LI J Q, WANG J W, CHEN S B, et al. Improved algorithm of subpixel edge detection using Zernike orthogonal moments[J]. Optical Technique, 2003, 29(4):500-503. (in Chinese) [13] 高世一, 赵明扬, 张雷, 等.基于Zernike正交矩的图像亚像素边缘检测算法改进[J]. 自动化学报, 2008, 34(9):1163-1168.GAO S Y, ZHAO M Y, ZHANG L, et al. Improved algorithm about subpixel edge detection of image based on Zernike orthogonal moments[J]. Acta Automatica Sinica, 2008, 34(9):1163-1168. (in Chinese) [14] 张晓林, 周哲海, 王晓玲, 等. 基于改进Zernike方法实现圆形边缘亚像素检测[J]. 计算机工程与应用, 2015, 51(20):157-161.ZHANG X L, ZHOU Z H, WANG X L, et al. Realizing circular subpixel edge detection based on improved Zernike method[J]. Computer Engineering and Applications, 2015, 51(20):157-161. (in Chinese) [15] CUI J, HUO J, YANG M. The high precision positioning algorithm of circular landmark center in visual measurement[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(21):6570-6575. [16] YANG H, PEI L. Fast algorithm of subpixel edge detection based on Zernike moments[J]. Application Research of Computers, 2011, 3(11):1236-1240. [17] 崔继文, 谭久彬. 基于Zernike矩的亚像素边缘定位算法[J]. 光学技术, 2005, 31(5):779-782.CUI J W, TAN J B. Algorithm for edge subpixel location based on Zernike moment[J]. Optical Technique, 2005, 31(5):779-782. (in Chinese) [18] Teague M R. Image analysis via the general theory of moments[J]. Journal of the Optical Society of America, 1980, 70(8):920-930. [19] OTSU N. A threshold selection method from gray-level histograms[J]. IEEE Transactions on Systems, Man and Cybernetics, 1979, 9(1):62-66. [20] ALVAREZ L, SALGADO A, SÁNCHEZ J. Robust detection and ordering of ellipses on a calibration pattern[J]. Pattern Recognition & Image Analysis, 2007, 17(4):508