Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (6): 453-460    DOI: 10.16511/j.cnki.qhdxxb.2019.26.005
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
不同上楼速度下的垂直地面反力
兰箭1, 朴贤浚1, 付成龙2, 陈恳1
1. 清华大学 机械工程系, 北京 100084;
2. 南方科技大学 机械与能源工程系, 深圳 518055
Vertical ground reaction forces at various speeds during stair climbing
LAN Jian1, Hyunjun Park1, FU Chenglong2, CHEN Ken1
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
全文: PDF(2302 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 上楼垂直地面反力决定着人体质心在垂直方向上的运动,与垂直方向上的平均行走速度、初速有密切的联系。该文建立了上楼行走垂直方向模型,提出了连续周期行走约束,给出了垂直地面反力表达式,研究了其最大值的影响因素,建立了垂直方向初速与垂直地面反力参数、水平方向平均速度之间的数学关系,并对不同上楼速度下的垂直地面反力最大值变化情况进行了预测。用光学运动捕捉系统和六维力台进行了不同速度下的上楼行走测试,测试结果表明:预测结论较准确,上楼低速行走时更加接近水平行走,为使垂直地面反力最大值变化较小,随着行走速度的增加,垂直方向初速增加。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
兰箭
朴贤浚
付成龙
陈恳
关键词 上楼行走不同行走速度垂直方向初速垂直地面反力最大值    
Abstract:The vertical ground reaction force determines the movement of the center of mass of the human body in the vertical direction during stair climbing. The vertical reaction force is closely related to the average vertical speed and the initial vertical speed. This paper presents a human stair climbing model that is used to derive the constraint for continuous climbing from the key factors influencing the maximum vertical force. The model gives mathematical expressions for the initial vertical speed, vertical force and the average horizontal speed. The model gives the change in the maximum vertical ground reaction force for various stair climbing speeds. Stair climbing tests were performed at various speeds using a motion analysis system and force platform. The tests verify the model accuracy with the results showing that the motion characteristics at low stair climbing speeds are closer to those of level walking than at high speeds and the initial vertical speed increases with increasing average horizontal speed to reduce the maximum vertical ground reaction force.
Key wordsstair climbing    different walking speeds    initial vertical speed    maximum vertical ground reaction force
收稿日期: 2018-11-05      出版日期: 2019-06-01
基金资助:国家自然科学基金资助项目(U1613206)
通讯作者: 付成龙,副教授,E-mail:fucl@sustc.edu.cn     E-mail: fucl@sustc.edu.cn
引用本文:   
兰箭, 朴贤浚, 付成龙, 陈恳. 不同上楼速度下的垂直地面反力[J]. 清华大学学报(自然科学版), 2019, 59(6): 453-460.
LAN Jian, Hyunjun Park, FU Chenglong, CHEN Ken. Vertical ground reaction forces at various speeds during stair climbing. Journal of Tsinghua University(Science and Technology), 2019, 59(6): 453-460.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.005  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I6/453
  图1 上楼行走垂直方向受力与时间区分
  图2 凹陷参数对垂直地面反力的影响
  图3 峰值对称参数对垂直地面反力的影响
  图4 垂直地面反力最大值随峰值对称参数和 凹陷参数的变化等高线图
  图5 两种情况的5种速度下凹陷参数、 峰值对称参数 之间的关系直线及二者之间的边界约束曲线
  图6 上楼行走实验测试环境
  图7 垂直地面反力最大值与人体质量的比值 随水平方向平均速度的变化
  图8 垂直方向初速随水平方向平均速度的变化
  图9 支撑期随水平方向平均速度的变化
  图10 当垂直方向初速为实测值时,5种速度下 凹陷参数、 峰值对称参数的关系直线
[1] RIENER R, RABUFFETTI M, FRIGO C. Stair ascent and descent at different inclinations[J]. Gait & Posture, 2002, 15(1):32-44.
[2] NADEAU S, MCFADYEN B J, MALOUIN F. Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years:What are the challenges compared to level walking?[J]. Clinical Biomechanics, 2003, 18(10):950-959.
[3] NOVAK A C, BROUWER B. Sagittal and frontal lower limb joint moments during stair ascent and descent in young and older adults[J]. Gait & Posture, 2011, 33(1):54-60.
[4] 张瑞红, 金德闻, 张济川, 等. 不同路况下正常步态特征研究[J]. 清华大学学报(自然科学版), 2000, 40(8):77-80. ZHANG R H, JIN D W, ZHANG J C, et al. Normal gait patterns on different terrain[J]. Journal of Tsinghua University (Science and Technology), 2000, 40(8):77-80. (in Chinese)
[5] PROTOPAPADAKI A, DRECHSLER W I, CRAMP M C, et al. Hip, knee, ankle kinematics and kinetics during stair ascent and descent in healthy young individuals[J]. Clinical Biomechanics, 2007, 22(2):203-210.
[6] 唐刚, 魏高峰, 周海, 等. 测量并分析上楼梯过程中下肢关节角变化[J]. 医用生物力学, 2011, 26(5):460-464. TANG G, WEI G F, ZHOU H, et al. Measurement and analysis of the joint angle in lower limb during stair ascent[J]. Journal of Medical Biomechanics, 2011, 26(5):460-464. (in Chinese)
[7] STACOFF A, DIEZI C, LUDER G, et al. Ground reaction forces on stairs:Effects of stair inclination and age[J]. Gait & Posture, 2005, 21(1):24-38.
[8] ALEXANDER R M, JAYES A S. Fourier analysis of forces exerted in walking and running[J]. Journal of Biomechanics, 1980, 13(4):383-390.
[9] MINETTI A E, ALEXANDER R M. A theory of metabolic costs for bipedal gaits[J]. Journal of Theoretical Biology, 1997, 186(4):467-476.
[10] NEUMANN D A. Kinesieology of the musculoskeletal system foundations for rehabilitation[M]. 2nd ed. St. Louis:Mosby Elsevier, 2010.
[11] KUO A D, DONELAN J M, RUINA A. Energetic consequences of walking like an inverted pendulum:Step-to-step transitions[J]. Exercise and Sport Sciences Reviews, 2005, 33(2):88-97.
[12] ADAMCZYK P G, KUO A D. Redirection of center-of-mass velocity during the step-to-step transition of human walking[J]. Journal of Experimental Biology, 2009, 212:2668-2678.
[13] DONELAN J M, KRAM R, KUO A D. Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking[J]. Journal of Experimental Biology, 2002, 205:3717-3727.
[14] DONELAN J M, KRAM R, KUO A D. Simultaneous positive and negative external mechanical work in human walking[J]. Journal of Biomechanics, 2002, 35(1):117-124.
[15] DE LEVA P. Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters[J]. Journal of Biomechanics, 1996, 29(9):1223-1230.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn