Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (7): 580-586    DOI: 10.16511/j.cnki.qhdxxb.2019.26.013
  汽车工程 本期目录 | 过刊浏览 | 高级检索 |
燃料电池扩散层与流道中液态水传输数值模拟与协同优化
杨家培1, 马骁1, 雷体蔓3, 罗开红2,3, 帅石金1
1. 清华大学 汽车工程系, 汽车安全与节能国家重点实验室, 北京 100084, 中国;
2. 清华大学 能源与动力工程系, 热科学与动力工程教育部重点实验室, 燃烧能源中心, 北京 100084, 中国;
3. 伦敦大学学院 机械工程系, 伦敦 WC1E 7JE, 英国
Numerical simulations for optimizing the liquid water transport in the gas diffusion layer and gas channels of a PEMFC
YANG Jiapei1, MA Xiao1, LEI Timan3, LUO Kai H.2,3, SHUAI Shijin1
1. State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084, China;
2. Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China;
3. Department of Mechanical Engineering, University College London, London WC1E 7JE, UK
全文: PDF(1513 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 燃料电池流道或扩散层结构的优化是改善高电流密度下排水性能的重要措施,已有研究多集中于流道或扩散层的独立优化,缺少针对穿孔型扩散层与波浪形流道中水输运的协同优化。该文采用多松弛时间格子Boltzmann高密度比多相模型,模拟了高电流密度工况下燃料电池流道和扩散层孔隙尺度下水的输运过程,分析了扩散层中Re大小和波浪形流道角度、以及扩散层中开孔形状和位置对燃料电池水管理的影响。结果表明:对扩散层以及流道的形状进行协同优化可以更有效地提高燃料电池的排水速率;同时发现扩散层中水开始排出的时刻随着Re的增加而减小,而与波浪形流道角度、开孔形状以及位置无关。该文针对锥孔型扩散层和波浪形流道的优化对未来的燃料电池在高电流密度下的水管理优化设计具有指导意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨家培
马骁
雷体蔓
罗开红
帅石金
关键词 质子交换膜燃料电池扩散层流道水输运格子Boltzmann方法    
Abstract:The multiple-relation-time (MRT) lattice Boltzmann method with a high-density-ratio two-phase model was used to simulate liquid water transport in the gas diffusion layer (GDL) and gas channels of a high-current-density fuel cell. The results show the effects of Reynolds number, perforation shapes and locations in the GDL and the angles of the wave-like gas channels on the water transport. The results show that the GDL and the gas channels should be optimized together to improve the water removal rate. In addition, the results show that the water begins running out of the GDL at earlier times as the Reynolds number increases with the times not related to the wave-like gas channel angle or the perforation shape or location. The structural optimization of the perforated GDL and the wave-like gas channels can guide future designs of fuel cells with high current densities.
Key wordsproton exchange membrane fuel cell    gas diffusion layer    gas channel    water transport    lattice Boltzmann method
收稿日期: 2019-01-04      出版日期: 2019-06-21
基金资助:国家重点研发计划项目(2018YFB0105403);北京市科学技术委员会项目(Z181100004518004);国家重点研发计划项目(面向重型载货车用燃料电池发动机集成与控制)
通讯作者: 马骁,副教授,E-mail:max@tsinghua.edu.cn     E-mail: max@tsinghua.edu.cn
引用本文:   
杨家培, 马骁, 雷体蔓, 罗开红, 帅石金. 燃料电池扩散层与流道中液态水传输数值模拟与协同优化[J]. 清华大学学报(自然科学版), 2019, 59(7): 580-586.
YANG Jiapei, MA Xiao, LEI Timan, LUO Kai H., SHUAI Shijin. Numerical simulations for optimizing the liquid water transport in the gas diffusion layer and gas channels of a PEMFC. Journal of Tsinghua University(Science and Technology), 2019, 59(7): 580-586.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.013  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I7/580
  图 1 计算区域
  图 2 模型验证对比
  表 1 模拟工况条件设置
  图 3 本文中GDL开孔形状和位置设置图
  图4 不同Re、GDL水质量与初始总水量之比随时间的变化
  图5 水开始排出GDL的无量纲时刻t*Re的关系曲线
  图6 在时间为100000lu时不同Re的液滴动态行为
  图 7 不同对称夹角时GDL水质量与初始总水量 之比随时间的变化
  图 8 左侧角度固定时GDL中水的质量与初始 总水量之比随时间的变化关系
  图 9 右侧角度固定时GDL中水的质量与初始 总水量之比随时间的变化关系
  图 1 0 不同开孔形状时GDL中水的质量与初始 总水量之比随时间的变化关系
  图 1 1 不同锥孔位置时GDL中水的质量与初始 总水量之比随时间的变化关系
[1] JIAO K, LI X G. Water transport in polymer electrolyte membrane fuel cells[J]. Progress in Energy and Combustion Science, 2011, 37(3):221-291.
[2] KUO J K, CHEN C K. A novel Nylon-6-S316L fiber compound material for injection molded PEM fuel cell bipolar plates[J]. Journal of Power Sources, 2006, 162(1):207-214.
[3] KUO J K, CHEN C K. Evaluating the enhanced performance of a novel wave-like form gas flow channel in the PEMFC using the field synergy principle[J]. Journal of Power Sources, 2006, 162(2):1122-1129.
[4] KUO J K, CHEN C K. The effects of buoyancy on the performance of a PEM fuel cell with a wave-like gas flow channel design by numerical investigation[J]. International Journal of Heat and Mass Transfer, 2007, 50(21-22):4166-4179.
[5] KUO J K, YEN T H, CHEN C K. Three-dimensional numerical analysis of PEM fuel cells with straight and wave-like gas flow fields channels[J]. Journal of Power Sources, 2008, 177(1):96-103.
[6] KUO J K, YEN T S, CHEN C K. Improvement of performance of gas flow channel in PEM fuel cells[J]. Energy Conversion and Management, 2008, 49(10):2776-2787.
[7] BYUN S J, WANG Z H, SON J, et al. Experimental study on improvement of performance by wave form cathode channels in a PEM fuel cell[J]. Energies, 2018, 11(2):319-319.
[8] LI W K, ZHANG Q L, WANG C, et al. Experimental and numerical analysis of a three-dimensional flow field for PEMFCs[J]. Applied Energy, 2017, 195:278-288.
[9] KIM J, LUO G, WANG C Y. Modeling two-phase flow in three-dimensional complex flow-fields of proton exchange membrane fuel cells[J]. Journal of Power Sources, 2017, 365:419-429.
[10] KONNO N, MIZUNO S, NAKAJI H, et al. Development of compact and high-performance fuel cell stack[J]. SAE International Journal of Alternative Powertrains, 2015, 4(1):123-129.
[11] GERTEISEN D, HEILMANN T, ZIEGLER C. Enhancing liquid water transport by laser perforation of a GDL in a PEM fuel cell[J]. Journal of Power Sources, 2008, 177(2):348-354.
[12] WANG X K, CHEN S T, FAN Z H, et al. Laser-perforated gas diffusion layer for promoting liquid water transport in a proton exchange membrane fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(50):29995-30003.
[13] FANG W Z, TANG Y Q, CHEN L, et al. Influences of the perforation on effective transport properties of gas diffusion layers[J]. International Journal of Heat and Mass Transfer, 2018, 126:243-255.
[14] LI Q, LUO K H, KANG Q J, et al. Lattice Boltzmann methods for multiphase flow and phase-change heat transfer[J]. Progress in Energy and Combustion Science, 2016, 52:62-105.
[15] SHAH A A, LUO K H, RALPH T R, et al. Recent trends and developments in polymer electrolyte membrane fuel cell modelling[J]. Electrochimica Acta, 2011, 56(11):3731-3757.
[16] LI Q, LUO K H, LI X J. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model[J]. Physical Review E, 2013, 87(5):053301.
[17] GUO Z L, SHU C. Lattice Boltzmann method and its applications in engineering[M]. Toh Tuck Link, Singapore:World Scientific Publishing, 2013.
[18] KRüGER T, KUSUMAATMAJA H, KUZMIN A, et al. The lattice Boltzmann method:Principles and practice[M]. Cham:Springer, 2017.
[19] LEI T M, MENG X H, GUO Z L. Pore-scale study on reactive mixing of miscible solutions with viscous fingering in porous media[J]. Computers & Fluids, 2017, 155:146-160.
[20] SHAN X W, CHEN H D. Lattice Boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E, 1993, 47(3):1815-1819.
[21] SHAN X W, CHEN H D. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation[J]. Physical Review E, 1994, 49(4):2941-2948.
[22] LI Q, LUO K H, KANG Q J, et al. Contact angles in the pseudopotential lattice Boltzmann modeling of wetting[J]. Physical Review E, 2014, 90(5-1):053301.
[23] YUAN P, SCHAEFER L. Equations of state in a lattice Boltzmann model[J]. Physics of Fluids, 2006, 18(4):042101.
[24] COLOSQUI C E, FALCUCCI G, UBERTINI S, et al. Mesoscopic simulation of non-ideal fluids with self-tuning of the equation of state[J]. Soft Matter, 2012, 8(14):3798-3809.
[25] LI Q, LUO K H. Thermodynamic consistency of the pseudopotential lattice Boltzmann model for simulating liquid-vapor flows[J]. Applied Thermal Engineering, 2014, 72(1):56-61.
[26] DULLIEN F A. Porous media:Fluid transport and pore structure[M]. New York:Academic Press, 1979.
[1] 刘倩, 桂南, 杨星团, 屠基元, 姜胜耀. 竖直通道内饱和蒸汽凝结换热数值模拟[J]. 清华大学学报(自然科学版), 2023, 63(8): 1273-1281.
[2] 王泽英, 陈涛, 张继伟, 陈金奇, 冯政恒. 基于仿生结构流场的质子交换膜燃料电池的性能[J]. 清华大学学报(自然科学版), 2022, 62(10): 1697-1705.
[3] 裴普成, 李子钊, 任棚, 陈东方, 王希忠. PEM燃料电池用金属双极板及其涂层的研究进展[J]. 清华大学学报(自然科学版), 2021, 61(10): 1025-1038.
[4] 李雪, 张虹, 林程, 王树博, 谢晓峰. 直接膜沉积制备高性能增强型质子交换膜燃料电池膜电极[J]. 清华大学学报(自然科学版), 2021, 61(10): 1039-1045.
[5] 李子君, 王树博, 李微微, 朱彤, 谢晓峰. 波形流道增强质子交换膜燃料电池性能[J]. 清华大学学报(自然科学版), 2021, 61(10): 1046-1054.
[6] 赵阳, 王树博, 李微微, 谢晓峰. 质子交换膜燃料电池电压损耗[J]. 清华大学学报(自然科学版), 2020, 60(3): 254-262.
[7] 何强, 李永健, 黄伟峰, 李德才, 胡洋, 王玉明. 基于MPI+OpenMP混合编程模式的大规模颗粒两相流LBM并行模拟[J]. 清华大学学报(自然科学版), 2019, 59(10): 847-853.
[8] 李跃华, 裴普成, 吴子尧, 贾肖宁. 质子交换膜燃料电池阴极单相流压降模型及验证[J]. 清华大学学报(自然科学版), 2018, 58(1): 43-49.
[9] 徐华池, 裴普成, 吴子尧. 质子交换膜燃料电池氢气渗透电流及电子电阻检测方法[J]. 清华大学学报(自然科学版), 2016, 56(6): 587-591.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn