CNN model for mining safety hazard data from a construction site
LIN Peng1, WEI Pengcheng1, FAN Qixiang2, CHEN Wenqi3
1. Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China; 2. China Huaneng Group Co., Ltd., Beijing 100031, China; 3. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
Abstract:A convolutional neural network model was used to mine typical safety hazard data from an infrastructure construction site for site intelligent safety control. Safety hazard data from a hydropower station during construction was analyzed to show the typical safety hazard data characteristics. The learning and mining used a convolution neural network (CNN) with the convolution layer, pooling layer, fully connected layer and training and testing processes defined here. The data mining and learning improves the safety flat-closed loop management safety for the construction site for intelligent safety management. The method then automatically identifies typical safety hazards for construction sites. The results provide guidance for automatic classification and analysis of safety hazards for a construction project.
林鹏, 魏鹏程, 樊启祥, 陈闻起. 基于CNN模型的施工现场典型安全隐患数据学习[J]. 清华大学学报(自然科学版), 2019, 59(8): 628-634.
LIN Peng, WEI Pengcheng, FAN Qixiang, CHEN Wenqi. CNN model for mining safety hazard data from a construction site. Journal of Tsinghua University(Science and Technology), 2019, 59(8): 628-634.
[1] 刘大有, 陈慧灵, 齐红, 等. 时空数据挖掘研究进展[J]. 计算机研究与发展, 2013, 50(2):225-239. LIU D Y, CHEN H L, QI H, et al. Advances in spatiotemporal data mining[J]. Journal of Computer Research and Development, 2013, 50(2):225-239. (in Chinese) [2] 冯勤. 基于回归数据挖掘预测系统的分析与研究[D]. 天津:天津大学, 2005. FENG Q. The analysis and research of regress-based prediction system on data mining[D]. Tianjin:Tianjin University, 2005. (in Chinese) [3] ZHOU G Q, WANG L B, WANG D, et al. Integration of GIS and data mining technology to enhance the pavement management decision making[J]. Journal of Transportation Engineering, 2010, 136(4):332-341. [4] 杨铁建. 基于支持向量机的数据挖掘技术研究[D]. 西安:西安电子科技大学, 2005. YANG T J. Research of data mining techniques based on support vector machines[D]. Xi'an:Xi'an University, 2005. (in Chinese) [5] 黄静华. 支持向量机算法研究及在气象数据挖掘中的应用[D]. 北京:中国矿业大学(北京), 2011. HUANG J H. The research of support vector machine algorithm and the application in meteorological data mining[D]. Beijing:China University of Mining and Technology (Beijing), 2011. (in Chinese) [6] 蒋旻. 基于空间数据库的数据挖掘技术[J]. 武汉科技大学学报(自然科学版), 2002, 25(2):183-186. JIANG M. Spatial data mining based on spatial databases[J]. Journal of Wuhan University of Science and Technology (Natural Science Edition), 2002, 25(2):183-186. (in Chinese) [7] 郭翠翠. 基于神经网络的数据挖掘方法研究[D]. 武汉:武汉理工大学, 2007. GUO C C. Research on data mining technique using artificial neural networks[D]. Wuhan:Wuhan University of Technology, 2007. (in Chinese) [8] TAVANA M, ABTAHI A R, DI CAPRIO D, et al. An artificial neural network and Bayesian network model for liquidity risk assessment in banking[J]. Neurocomputing, 2018, 275:2525-2554. [9] 张长鲁. 基于数据挖掘的煤矿安全可视化管理研究[D]. 北京:中国矿业大学(北京), 2015. ZHANG C L. Visual management of safety in coal mines based on data mining[D]. Beijing:China University of Mining and Technology (Beijing), 2015. (in Chinese) [10] 柴文光, 周宁. 网络信息安全防范与Web数据挖掘技术的整合研究[J]. 情报理论与实践, 2009, 32(3):97-101. CHAI W G, ZHOU N. Self-adaptive personalized web page recommendation based on semantics[J]. Information Studies:Theory & Application, 2009, 32(3):97-101. (in Chinese) [11] 刘清毅. 计算机网络安全病毒防御中的数据挖掘技术应用[J]. 微型电脑应用, 2018, 34(4):73-75. LIU Q Y. Application of data mining technology in virus defense and computer network security[J]. Microcomputer Applications, 2018, 34(4):73-75. (in Chinese) [12] 林国顺, 陈燕, 贾智辉, 等. 基于数据挖掘的道路运行安全因素关联分析[J]. 大连海事大学学报, 2011, 37(3):62-65. LIN G S, CHEN Y, JIA Z H, et al. Association analysis of the road running safety factors based on data mining technology[J]. Journal of Dalian Maritime University, 2011, 37(3):62-65. (in Chinese) [13] 张晓辉. 云理论和数据挖掘在水上安全分析中的应用[D]. 大连:大连海事大学, 2011. ZHANG X H. Applications of cloud theory and data mining in marine safety analysis[D]. Dalian:Dalian Maritime University, 2011. (in Chinese) [14] GUO J X, DING H. Application of data mining on water supply management[C]//Proceedings of International Joint Conference on Artificial Intelligence. Hainan Island, China:IEEE, 2009:606-608. [15] 傅韬, 史赟. 数据挖掘技术在水利信息化中的应用[J]. 江西水利科技, 2009, 35(1):74-75. FU T, SHI Y. Application of the data mining technology in informationizing water conservancy[J]. Jiangxi Hydraulic Science & Technology, 2009, 35(1):74-75. (in Chinese) [16] 陈谦亮, 王义民. 基于数据挖掘的水库智能决策支持系统研究[J]. 水资源与水工程学报, 2009, 20(3):75-78, 82. CHEN Q L, WANG Y M. Intelligent decision-making supporting system of reservoir based on data mining techniques[J]. Journal of Water Resources and Water Engineering, 2009, 20(3):75-78, 82. (in Chinese) [17] 李智录, 李波. 基于PLSR的静态灰色模型在大坝安全监控中的应用[J]. 大坝与安全, 2006(6):48-51. LI Z L, LI B. Application of static gray model based on PLSR into dam safety monitoring[J]. Dam & Safety, 2006(6):48-51. [18] LI X C, ZHONG D H, REN B Y, et al. Prediction of curtain grouting efficiency based on ANFIS[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(1):281-309. [19] ZHONG D H, DU R X, CUI B, et al. Real-time spreading thickness monitoring of high-core rockfill dam based on K-nearest neighbor algorithm[J]. Transactions of Tianjin University, 2018, 24(3):282-289. [20] 常成. 基于PDMiner大数据挖掘平台的电力系统安全评估及故障诊断系统[J]. 电力与能源, 2016, 37(1):7-11. CHANG C. Power system security assessment and fault diagnosis system based on PDMiner large data mining platform[J]. Power & Energy, 2016, 37(1):7-11. (in Chinese) [21] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//Proceedings of the IEEE Conference on computer Vision and Pattern Recognition. Boston, USA:IEEE, 2015:1-9. [22] SUN Y, WANG X G, TANG X O. Deeply learned face representations are sparse, selective, and robust[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA:IEEE, 2015:2892-2900. [23] 张晴晴, 刘勇, 潘接林, 等. 基于卷积神经网络的连续语音识别[J]. 工程科学学报, 2015, 37(9):1212-1217. ZHANG Q Q, LIU Y, PAN J L, et al. Continuous speech recognition by convolutional neural networks[J]. Chinese Journal of Engineering, 2015, 37(9):1212-1217. (in Chinese) [24] 林鹏, 王英龙, 汪志林, 等. 基于微信的大型水电工程安全隐患排查治理系统研发与应用[J]. 中国安全生产科学技术, 2017, 13(7):137-143. LIN P, WANG Y L, WANG Z L, et al. Development and application of potential safety hazard investigation and control system for large hydropower engineering based on WeChat[J]. Journal of Safety Science and Technology, 2017, 13(7):137-143. (in Chinese)