Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (8): 645-654    DOI: 10.16511/j.cnki.qhdxxb.2019.22.010
  水利水电工程 本期目录 | 过刊浏览 | 高级检索 |
温-水-土-结构耦合作用下寒区梯形衬砌渠道结构形体优化
王羿, 刘瑾程, 刘铨鸿, 王正中
西北农林科技大学 旱区寒区水工程安全研究中心, 旱区农业水土工程教育部重点实验室, 杨凌 712100
Shape optimization of a trapezoidal canal structure for coupled temperature-water-soil conditions in cold regions
WANG Yi, LIU Jincheng, LIU Quanhong, WANG Zhengzhong
Cold and Arid Regions Water Engineering Safety Research Center, Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas of Ministry of Education, Northwest A & F University, Yangling 712100, China
全文: PDF(3446 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为提高寒区大型梯形渠道结构输水及抗冻胀破坏能力,采用分层序列法构建渠道断面水力与抗冻胀双目标优化方法。为准确反映温、水、土等外环境与衬砌结构耦合作用所导致的渠道冻胀变形过程,基于冻土水-热-力耦合冻胀理论建立了衬砌渠道冻胀分析模型。以水力最优为第1层次优化,以所得形体几何参数作为抗冻胀优化的解集空间;在第2层次的抗冻胀优化过程中提出了衬砌结构整体刚度指标,并以整体刚度指标最小作为优化目标,以衬砌允许最大法向位移和拉应力作为约束条件;通过COMSOL软件二次开发对冻胀模型控制方程进行有限元求解。工程算例表明:优化结果体现了对渠道行水和衬砌抗冻胀的改进;与原设计相比,优化后渠道结构整体刚度系数减小30%~48%,提高了对冻胀变形的适应能力。该方法可为类似工程设计提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王羿
刘瑾程
刘铨鸿
王正中
关键词 衬砌渠道温-水-土-结构耦合形体优化分层序列法水热力耦合理论    
Abstract:The shape of a large trapezoidal canal in a cold region should be optimized to improve the water delivery and minimize frost damage. This study used a double objective analysis to optimize the hydraulics and the frost damage prevention for a canal using the hierarchical sequence method. A frost heave model was developed for a concrete lining canal based on thermo-hydro-mechanics frost heave theory for freezing soil to predict the canal deformation for various temperature, water, and soil conditions. The optimal hydraulic design was predicted first with the canal section parameters then used as the solution set space for the frost damage prevention optimization. The overall stiffness index of the lining was set as the optimization object with the allowable maximum normal displacement and stress in the lining set as the optimization constraints. The model was solved using the secondary hierarchical sequence method in COMSOL. The results show that this method can consider both the water delivery and the frost damage effect on the canal section. The practical case results indicate that the overall stiffness index of the lining is reduced by 30%-48% from that of the original design using this method to get an optimized canal section, which improves the adaptability to frost damage of the lining structure. This method can also be used for similar analyses involving hydraulics and frost damage effects.
Key wordslined canal    coupling of temperature-water-soil and structure    shape optimization    hierarchical sequence method    thermo-hydro-mechanics theory
收稿日期: 2018-10-31      出版日期: 2019-08-05
基金资助:国家重点研发计划“水资源高效开发利用”重点专项(2017YFC0405100);国家自然科学基金项目(51279168);国家十二五科技支撑计划(2012BAD10B02);中央高校基本科研业务科技创新专项(Z102021848,Z109021807)
通讯作者: 王正中,教授,E-mail:wangzz0910@163.com     E-mail: wangzz0910@163.com
引用本文:   
王羿, 刘瑾程, 刘铨鸿, 王正中. 温-水-土-结构耦合作用下寒区梯形衬砌渠道结构形体优化[J]. 清华大学学报(自然科学版), 2019, 59(8): 645-654.
WANG Yi, LIU Jincheng, LIU Quanhong, WANG Zhengzhong. Shape optimization of a trapezoidal canal structure for coupled temperature-water-soil conditions in cold regions. Journal of Tsinghua University(Science and Technology), 2019, 59(8): 645-654.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.22.010  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I8/645
  图1 衬砌结构正应力及表面长度示意图
  图2 渠道断面参数优化建模流程及几何模型
  图3 当地月平均气温
  表1 材料计算参数
  图4 不同边坡系数 m 和实佳比α 时渠顶、 渠底冻深
  图5 (网络版彩图)不同边坡系数 m 和实佳比α 时渠道温度场分布特征
  图6 不同设计参数下衬砌最大法向冻胀位移 和截面最大拉应力
  图7 衬砌上、 下表面整体刚度指标
  表2 设计参数优化结果
  图8 景电工程渠道基土温度监测结果(2017年1月)
  图9 不同设计参数下渠道冻胀分布
[1] 中华人民共和国水利部. 渠系工程抗冻胀设计规范:SL 23-2006[S]. 北京:中国水利水电出版社, 2006. Ministry of Water Resources of the People's Republic of China. Design code for anti-frost-heave of canal and its structure:SL 23-2006[S]. Beijing:China Water & Power Press, 2006. (in Chinese)
[2] SWAMEE P K. Optimal irrigation canal sections[J]. Journal of Irrigation and Drainage Engineering, 1995, 121(6):467-469.
[3] SWAMEE P, MISHRA G, CHAHAR B. Comprehensive design of minimum cost irrigation canal sections[J]. Journal of Irrigation and Drainage Engineering, 2000, 126(5):322-327.
[4] 余长洪, 周明耀, 姜健俊, 等. 灌区节水改造中防渗渠道断面的优化设计[J]. 农业工程学报, 2004, 20(1):91-94. YU C H, ZHOU M Y, JIANG J J, et al. Optimal design of anti-seepage channel section for water-saving transformation in irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(1):91-94. (in Chinese)
[5] 脱云飞, 王克勤, 宋维峰, 等. 灌溉渠道优化设计方法研究[J]. 中国农村水利水电, 2012(4):58-60. TUO Y F, WANG K Q, SONG W F, et al. Research on optimal design and method of irrigation channel[J]. China Rural Water and Hydropower, 2012(4):58-60. (in Chinese)
[6] 辛英华, 王正中. U形衬砌渠道结构及水力最佳断面的分析[J]. 节水灌溉, 2008(2):36-38, 45. XIN Y H, WANG Z Z. The structural and hydraulic analysis on frost-heaving concrete lining of the U-shape canal[J]. Water Saving Irrigation, 2008(2):36-38, 45. (in Chinese)
[7] 王正中, 李甲林, 陈涛, 等. 弧底梯形渠道砼衬砌冻胀破坏的力学模型研究[J]. 农业工程学报, 2008, 24(1):18-23. WANG Z Z, LI J L, CHEN T, et al. Mechanics models of frost-heaving damage of concrete lining trapezoidal canal with arc-bottom[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(1):18-23. (in Chinese)
[8] 王正中. 梯形渠道砼衬砌冻胀破坏的力学模型研究[J]. 农业工程学报, 2004, 20(3):24-29. WANG Z Z. Establishment and application of mechanics models of frost heaving damage of concrete lining trapezoidal open canal[J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(3):24-29. (in Chinese)
[9] 刘东, 胡宇祥, 付强, 等. 北方灌区混凝土衬砌渠道断面优化及参数分析[J]. 农业工程学报, 2015, 31(20):107-114. LIU D, HU Y X, FU Q, et al. Optimization and parameter analysis for channel cross section with concrete lining in northern irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(20):107-114. (in Chinese)
[10] 王正中, 沙际德, 蒋允静, 等. 正交各向异性冻土与建筑物相互作用的非线性有限元分析[J]. 土木工程学报, 1999, 32(3):55-60. WANG Z Z, SHA J D, JIANG Y J, et al. Nonlinear finite element analysis of interaction of orthotropic frozen ground and construction[J]. China Civil Engineering Journal, 1999, 32(3):55-60. (in Chinese)
[11] 刘旭东, 王正中, 闫长城, 等. 基于数值模拟的双层薄膜防渗衬砌渠道抗冻胀机理探讨[J]. 农业工程学报, 2011, 27(1):29-35. LIU X D, WANG Z Z, YAN C C, et al. Exploration on anti-frost heave mechanism of lining canal with double films based on computer simulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1):29-35. (in Chinese)
[12] 李爽, 王正中, 高兰兰, 等. 考虑混凝土衬砌板与冻土接触非线性的渠道冻胀数值模拟[J]. 水利学报, 2014, 45(4):497-503. LI S, WANG Z Z, GAO L L, et al. Numerical simulation of canal frost heaving considering nonlinear contact between concrete lining board and soil[J]. Journal of Hydraulic Engineering, 2014, 45(4):497-503. (in Chinese)
[13] 郝晋彩, 娄宗科, 高凤. 梯形渠道冻胀数值模拟与边坡系数优化[J]. 灌溉排水学报, 2017, 36(12):81-86. HAO J C, LOU Z K, GAO F. Numerical simulation and slope coefficient optimization of frost heave of trapezoidal channel[J]. Journal of Irrigation and Drainage, 2017, 36(12):81-86. (in Chinese)
[14] 安鹏, 邢义川, 张爱军, 等. 弧底梯形渠道抗冻胀结构优化与数值模拟[J]. 灌溉排水学报, 2017, 36(11):56-62. AN P, XING Y C, ZHANG A J, et al. Optimal analysis of anti-frost heaping canal with cross section of trapezoidal slopes and curved bed[J]. Journal of Irrigation and Drainage, 2017, 36(11):56-62. (in Chinese)
[15] LIU Z, YU X. Coupled thermo-hydro-mechanical model for porous materials under frost action:Theory and implementation[J]. Acta Geotechnica, 2011, 6(2):51-65.
[16] KURYLYK B L, WATANABE K. The mathematical representation of freezing and thawing processes in variably-saturated, non-deformable soils[J]. Advances in Water Resources, 2013, 60:160-177.
[17] 刘月, 王正中, 王羿, 等. 考虑水分迁移及相变对温度场影响的渠道冻胀模型[J]. 农业工程学报, 2016, 32(17):83-88. LIU Y, WANG Z Z, WANG Y, et al. Frost heave model of canal considering influence of moisture migration and phase transformation on temperature field[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(17):83-88. (in Chinese)
[18] 代鸿, 曹波. 多目标模糊优化在船舶结构设计中的应用[J]. 舰船科学技术, 2017, 39(7A):4-6. DAI H, CAO B. Application of multi objective fuzzy optimization method in ship structure design[J]. Ship Science and Technology, 2017, 39(7A):4-6. (in Chinese)
[19] 张秀利, 梁迎春, 董申. 多目标结构模糊优化的分层序列法[J]. 机械设计与制造, 1999(5):44-45. ZHANG X L, LIANG Y C, DONG S. Lexicograhic method for fuzzy multiobjective optimization of structures[J]. Machinery Design & Manufacture, 1999(5):44-45. (in Chinese)
[20] 李炜. 水力计算手册[M]. 2版. 北京:中国水利水电出版社, 2006. LI W. Hydraulic calculation manual[M]. 2nd ed. Beijing:China Water & Power Press, 2006. (in Chinese)
[21] 刘晓燕, 赵军, 石成, 等. 土壤恒温层温度及深度研究[J]. 太阳能学报, 2007, 28(5):494-498. LIU X Y, ZHAO J, SHI C, et al. Study on soil layer of constant temperature[J]. Acta Energiae Solaris Sinica, 2007, 28(5):494-498. (in Chinese)
[22] 张建荣, 刘照球. 混凝土对流换热系数的风洞实验研究[J]. 土木工程学报, 2006, 39(9):39-42, 61. ZHANG J R, LIU Z Q. A study on the convective heat transfer coefficient of concrete in wind tunnel experiment[J]. China Civil Engineering Journal, 2006, 39(9):39-42, 61. (in Chinese)
[23] LI S Y, ZHANG M Y, PEI W S, et al. Experimental and numerical simulations on heat-water-mechanics interaction mechanism in a freezing soil[J]. Applied Thermal Engineering, 2018, 132:209-220.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn