Abstract:Biased current control consumes large amounts of power which increases system temperatures and causes temperature drift in sensors which then affects the levitation accuracy. The rotor suspension is also affected by unbalanced forces, sensor runout and other effects which lead to vibrations. This paper presents a zero-bias current strategy based on a multiple frequency notch filter. The zero-bias current control algorithm reduces the power consumption, handles the nonlinearities in the zero-bias current strategy, and translates the nonlinear relationship between the current and the displacement into a linear relationship between the magnetic force and the displacement so that a linear control strategy can be used. The multiple frequency notch filter then suppresses the vibrations. Three controllers are analyzed in tests with no unbalanced control, only single frequency notch filter control and multiple frequency notch filter control to verify the system effectiveness. The method not only suppresses the vibrations, but also significantly reduces the power consumption.
荣海, 周凯, 毛飞龙. 基于零偏置电流的磁悬浮电主轴动不平衡力抑制[J]. 清华大学学报(自然科学版), 2019, 59(8): 683-688.
RONG Hai, ZHOU Kai, MAO Feilong. Suppression of imbalance vibrations in magnetically suspended spindles based on zero-bias current control. Journal of Tsinghua University(Science and Technology), 2019, 59(8): 683-688.
[1] SCHWEITZER G, MASLEN E H. Magnetic bearings:Theory, design, and application to rotating machinery[M]. Berlin, Germany:Springer-Verlag, 2009. [2] 卞斌. 基于DSP平台的磁悬浮轴承数字控制系统[D]. 济南:山东大学, 2012. BIAN B. Digital control system of active magnetic bearing based on DSP platform[D]. Ji'nan:Shandong University, 2012. (in Chinese) [3] 吴华春, 胡业发. 磁悬浮磨削主轴热态特性[J]. 机械工程学报, 2010, 46(20):29-33. WU H C, HU Y F. Thermal characteristics of magnetic levitated grinding spindle[J]. Journal of Mechanical Engineering, 2010, 46(20):29-33. (in Chinese) [4] 张亮. 磁悬浮电主轴温度场的仿真与实验[D]. 武汉:武汉理工大学, 2015. ZHANG L. Simulation and experiment of temperature field for active magnetic bearing[D]. Wuhan:Wuhan University of Technology, 2015. (in Chinese) [5] CHARARA A, DE MIRAS J, CARON B. Nonlinear control of a magnetic levitation system without premagnetization[J]. IEEE Transactions on Control Systems Technology, 1996, 4(5):513-523. [6] SIVRIOGLU S, NONAMI K, SAIGO M. Low power consumption nonlinear control with H∞ compensator for a zero-bias flywheel AMB system[J]. Journal of Vibration and Control, 2004, 10(8):1151-1166. [7] 张剀, 赵雷, 赵鸿宾. 磁悬浮飞轮低功耗控制方法仿真研究[J]. 清华大学学报(自然科学版), 2004, 44(3):301-303. ZHANG K, ZHAO L, ZHAO H B. Zero-power control method for a flywheel suspended by active magnetic bearings[J]. Journal of Tsinghua University (Science and Technology), 2004, 44(3):301-303. (in Chinese) [8] JASTRZEBSKI R P, SMIRNOV A, MYSTKOWSKI A, et al. Cascaded position-flux controller for an AMB system operating at zero bias[J]. Energies, 2014, 7(6):3561-3575. [9] CUI P L, WANG Q, LI S, et al. Combined FIR and fractional-order repetitive control for harmonic current suppression of magnetically suspended rotor system[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6):4828-4835. [10] SHI J, ZMOOD R, QIN L. Synchronous disturbance attenuation in magnetic bearing systems using adaptive compensating signals[J]. Control Engineering Practice, 2004, 12(3):283-290. [11] HERZOG R, BVHLER P, GÄHLER C, et al. Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings[J]. IEEE Transactions on Control Systems Technology, 1996, 4(5):580-586. [12] CUI P, LI S, WANG Q R, et al. Harmonic current suppression of an AMB rotor system at variable rotation speed based on multiple phase-shift notch filters[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11):6962-6969. [13] DARBANDI S M, BEHZAD M, SALARIEH H, et al. Harmonic disturbance attenuation in a three-pole active magnetic bearing test rig using a modified notch filter[J]. Journal of Vibration and Control, 2015, 11(4):46-51.