Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (9): 689-698    DOI: 10.16511/j.cnki.qhdxxb.2019.26.010
  航空航天与工程力学 本期目录 | 过刊浏览 | 高级检索 |
行星车动力学建模及解算方法综述
冷舒, 居鹤华
南京航空航天大学 航天学院, 南京 210016
Review of rover dynamics modeling methods
LENG Shu, JU Hehua
College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 深空探测中行星车的动力学建模及实时解算是控制行星车安全行驶的基础。因行星车运动速度很慢,且通过摇臂结构组装而成,故其可以看作多刚体系统。该文介绍了多刚体动力学建模领域的主流方法,分析了上述方法的基本原理,并浅析它们的优缺点。同时因轮土力学的计算结果是行星车的外部作用力,故针对模型解算时存在的轮土力学问题进行调研,得到了钢轮软土模型的解决方案。通过总结上述方法,为行星车动力学建模与实时求解提供了解决思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冷舒
居鹤华
关键词 深空探测行星车多刚体动力学建模轮土力学    
Abstract:Modeling of rover dynamics in real-time is key to controlling a rover for planetary exploration. The rover is typically modeled as a rigid body system because of its slow movement and the bogie-rocker structure. This paper introduces various rigid body dynamics analysis approaches and the advantages and disadvantages of these algorithms. Terramechanics is used to describe of the external forces on the rover system. The steel wheel and soft soil model is shown to be the most suitable model for describing the dynamics for real-time modeling of the rover dynamics.
Key wordsdeep space exploration    rover    multibody    dynamics modeling    terramechanics
收稿日期: 2018-12-05      出版日期: 2019-08-27
基金资助:国家自然科学基金资助项目(61673010)
通讯作者: 居鹤华,教授,E-mail:juhehua@163.com     E-mail: juhehua@163.com
引用本文:   
冷舒, 居鹤华. 行星车动力学建模及解算方法综述[J]. 清华大学学报(自然科学版), 2019, 59(9): 689-698.
LENG Shu, JU Hehua. Review of rover dynamics modeling methods. Journal of Tsinghua University(Science and Technology), 2019, 59(9): 689-698.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.26.010  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I9/689
  图1 国内外的部分行星车
  图2 行星车拓扑机构
  表1 NewtonGEuler递归法的改进方法
  图3 闭链刚体问题解决方法 [13]
  表2 递归算法的建模复杂度与计算复杂度
  图4 仿真软件
  表3 35自由度系统的平均计算时间对比
  图5 自由度变化时2种方法的计算时间对比结果[31]
  图6 轮土力学图 [32]
  表4 基本轮土参数
  图7 轮土几何关系
  表5 图7中补充的轮土参数
  图8 车轮坐标系统
  图9 平地实验对比结果[40]
  表6 2个实验的平均误差对比结果
  图10 2组实验对比[43]
  图11 轮土力学仿真模型
[1] 谢传峰, 王琪, 程耀, 等. 动力学[M]. 北京:高等教育出版社, 2006. XIE C F, WANG Q, CHENG Y, et al. Dynamics[M]. Beijing:Higher Education Press, 2006.(in Chinese)
[2] KANE T R, WANG C F. On the derivation of equations of motion[J]. Journal of the Society for Industrial and Applied Mathematics, 1965, 13(2):487-492.
[3] SINGH R P, LIKINS P W. Manipulator interactive design with interconnected flexible elements[C]//Proceedings of the 1983 American Control Conference. San Francisco, USA:IEEE, 1983:505-512
[4] KANE T R, LEVINSON D A. Formulation of equations of motion for complex spacecraft[J], Journal of Guidance, Control, and Dynamics, 1980, 3(2):99-112.
[5] KANE T R, LEVINSON D A. The use of Kane's dynamical equations in robotics[J]. The International Journal of Robotics Research, 1983, 2(3):3-21.
[6] KANE T R, LEVINSON D A. Dynamics, theory and applications[M]. New York:McGraw-Hill, 1985.
[7] LUH J Y S, WALKER M W, PAUL R P C. On-line computational scheme for mechanical manipulators[J]. Journal of Dynamic Systems, Measurement, and Control, 1980, 102(2):69-76.
[8] ARMSTRONG W W. Recursive solution to the equations of motion of an n-link manipulator[C]//Proceedings of the Fifth World Congress on Theory of Machines and Mechanisms. Montreal, Canada:American Society of Mechanical Engineers, 1979:1343-1346.
[9] ORIN D E, MCGHEE R B, VUKOBRATOVIC M, et al. Kinematic and kinetic analysis of open-chain linkages utilizing Newton-Euler methods[J]. Mathematical Biosciences, 1979, 43(1-2):107-130.
[10] RODRIGUEZ G. Kalman filtering, smoothing, and recursive robot arm forward and inverse dynamics[J]. IEEE Journal on Robotics and Automation, 1987, 3(6):624-639.
[11] RODRIGUEZ G. Recursive forward dynamics for multiple robot arms moving a common task object[J]. IEEE Transactions on Robotics and Automation, 1989, 5(4):510-521.
[12] KREUTZ D K, JAIN A, RODRIGUEZ G. Recursive formulation of operational space control[J]. The International Journal of Robotics Research, 1992, 11(4):320-328.
[13] JAIN A. Robot and multibody dynamics:Analysis and algorithms[M]. New York:Springer, 2011.
[14] JAIN A. Operational space inertia for closed-chain robotic systems[J]. Journal of Computational and Nonlinear Dynamics, 2014, 9(2):021015.
[15] FEATHERSTONE R. The calculation of robot dynamics using articulated-body inertias[J]. The International Journal of Robotics Research, 1983, 2(1), 13-30.
[16] FEATHERSTONE R. A divide-and-conquer articulated-body algorithm for parallel O (log (n)) calculation of rigid-body dynamics. Part 1:Basic algorithm[J]. The International Journal of Robotics Research, 1999, 18(9):867-875.
[17] FEATHERSTONE R. A divide-and-conquer articulated-body algorithm for parallel O (log (n)) calculation of rigid-body dynamics, Part 2:Trees, loops, and accuracy[J]. The International Journal of Robotics Research, 1999, 18(9):876-892.
[18] FEATHERSTONE R, ORIN D. Robot dynamics:Equations and algorithms[C]//Proceedings IEEE International Conference on Robotics and Automation. San Francisco, USA:IEEE, 2000:826-834.
[19] FEATHERSTONE R. A beginner's guide to 6-D vectors (part 1)[J]. IEEE Robotics & Automation Magazine, 2010, 17(3):83-94.
[20] FEATHERSTONE R. Rigid body dynamics algorithms[M]. Boston:Springer, 2008.
[21] UCHIDA T U, MCPHEE J. Triangularizing kinematic constraint equations using Grö bner bases for real-time dynamic simulation[J]. Multibody System Dynamics, 2011, 25(3):335-356.
[22] UCHIDA T U, MCPHEE J. Using Grö bner bases to generate efficient kinematic solutions for the dynamic simulation of multi-loop mechanisms[J]. Mechanism and Machine Theory, 2012, 52:144-157.
[23] HOLLERBACH J M. A recursive Lagrangian formulation of maniputator dynamics and a comparative study of dynamics formulation complexity[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1980, 10(11):730-736.
[24] UICKER J J. On the dynamic analysis of spatial linkages using 4×4 matrices[J]. PhD Dissertation, Northwestern University, 1965:70-77.
[25] KAHN M E, ROTH B. The near-minimum-time control of open-loop articulated kinematic chains[J]. Journal of Dynamic Systems, Measurement, and Control, 1971, 93(3):164-172.
[26] SILVER W M. On the equivalence of Lagrangian and Newton-Euler dynamics for manipulators[J]. The International Journal of Robotics Research, 1982, 1(2):60-70.
[27] HEHUA J, BAOQIAN S, SHU L, et al. Hand book of space robotics:Axis-invariant based MAS modeling, planning and control[M]. New York:Springer Press., 2018.
[28] BOOK W J. Recursive Lagrangian dynamics of flexible manipulator arms[J]. The International Journal of Robotics Research, 1984, 3(3):87-101.
[29] SAYAHKARAJY M, MOHAMED Z, MOHD FAUDZI A A. Review of modelling and control of flexible-link manipulators[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2016, 230(8):861-873.
[30] PARK F C, KIM B, JANG C, et al. Geometric algorithms for robot dynamics:A tutorial review[J]. Applied Mechanics Reviews, 2018, 70(1):010803.
[31] FELIS M L. RBDL:An efficient rigid-body dynamics library using recursive algorithms[J]. Autonomous Robots, 2017, 41(2):495-511.
[32] IAGNEMMA K, KANG S, BROOKS C, et al. Multi-sensor terrain estimation for planetary rovers[C]//Proceedings of the 7th International Symposium on Artificial Intelligence, Robotics, and Automation in Space. New York, USA:IEEE Press, 2003.
[33] BEKKER M G. Off-the-road locomotion:Research and development in terramechanics[M]. AnnArbor:University of Michigan Press, 1960.
[34] BEKKER M G. Introduction to terrain-vehicle systems[M]. AnnArbor:University of Michigan Press, 1969.
[35] JANOSI Z, HANAMOTO B. The analytical determination of drawbar pull as a function of slip for tracked vehicle in deformable soils[C]//Proceedings of the 1st Conference on International Terrain-Vehicle Systems. Torino, Italy, 1961.
[36] WONG J Y. On the study of wheel-soil interaction[J]. Journal of Terramechanics, 1984, 21(2):117-131.
[37] WONG J Y. Terramechanics and off-road vehicle engineering:Terrain behaviour, off-road vehicle performance and design[M]. Oxford:Butterworth-heinemann, 2009.
[38] IAGNEMMA K, SHIBLY H, DUBOWSKY S. On-line terrain parameter estimation for planetary rovers[C]//Proceedings of 2002 IEEE International Conference on Robotics and Automation. Washington, USA:IEEE, 2002:3142-3147.
[39] IAGNEMMA K, DUBOWSKY S. Mobile robots in rough terrain:Estimation, motion planning, and control with application to planetary rovers[M]. New York:Springer Publishing Company, Incorporated, 2010.
[40] YOSHIDA K, HAMANO H. Motion dynamics of a rover with slip-based traction model[C]//Proceedings 2002 IEEE International Conference on Robotics and Automation. Washington, USA:IEEE, 2002:3155-3160.
[41] YOSHIDA K, WATANABE T, MIZUNO N, et al. Terramechanics-based analysis and traction control of a lunar/planetary rover[M]//YUTA S, ASAMA H, PRASSLER E, et al. Field and service robotics. Berlin, Heidelberg:Springer, 2003:225-234.
[42] YOSHIDA K, ISHIGAMI G. Steering characteristics of a rigid wheel for exploration on loose soil[C]//Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan:IEEE, 2004:3995-4000.
[43] ISHIGAMI G, MIWA A, NAGATANI K, et al. Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil[J]. Journal of Field Robotics, 2007, 24(3):233-250.
[44] 居鹤华, 田小二. 月面巡视器实时动力学建模与牵引控制[J]. 宇航学报, 2014, 35(7):743-752.JU H H, TIAN X E. Real-time dynamics modeling and traction control for lunar rover[J]. Journal of Astronautics, 2014, 35(7):743-752.(in Chinese)
[45] 田小二. 基于弹塑性轮土力学及黏弹性运动副的月球车动力学研究[D]. 北京:北京工业大学, 2013.TIAN X E. The research on lunar rover dynamics based on elastoplastic wheel-terrain mechanics and viscoelastic kinematic pair[D]. Beijing:Beijing University of Technology, 2013.(in Chinese)
[1] 王煜天,丘嘉豪,吴军,张彬彬. 一种新型数控机床可靠性试验加载机构动力学评价方法[J]. 清华大学学报(自然科学版), 2020, 60(12): 1023-1029.
[2] 张辉,于长亮,王仁彻,叶佩青,梁文勇. 机床支撑地脚结合部参数辨识方法[J]. 清华大学学报(自然科学版), 2014, 54(6): 815-821.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn