Abstract:Modeling of rover dynamics in real-time is key to controlling a rover for planetary exploration. The rover is typically modeled as a rigid body system because of its slow movement and the bogie-rocker structure. This paper introduces various rigid body dynamics analysis approaches and the advantages and disadvantages of these algorithms. Terramechanics is used to describe of the external forces on the rover system. The steel wheel and soft soil model is shown to be the most suitable model for describing the dynamics for real-time modeling of the rover dynamics.
[1] 谢传峰, 王琪, 程耀, 等. 动力学[M]. 北京:高等教育出版社, 2006. XIE C F, WANG Q, CHENG Y, et al. Dynamics[M]. Beijing:Higher Education Press, 2006.(in Chinese) [2] KANE T R, WANG C F. On the derivation of equations of motion[J]. Journal of the Society for Industrial and Applied Mathematics, 1965, 13(2):487-492. [3] SINGH R P, LIKINS P W. Manipulator interactive design with interconnected flexible elements[C]//Proceedings of the 1983 American Control Conference. San Francisco, USA:IEEE, 1983:505-512 [4] KANE T R, LEVINSON D A. Formulation of equations of motion for complex spacecraft[J], Journal of Guidance, Control, and Dynamics, 1980, 3(2):99-112. [5] KANE T R, LEVINSON D A. The use of Kane's dynamical equations in robotics[J]. The International Journal of Robotics Research, 1983, 2(3):3-21. [6] KANE T R, LEVINSON D A. Dynamics, theory and applications[M]. New York:McGraw-Hill, 1985. [7] LUH J Y S, WALKER M W, PAUL R P C. On-line computational scheme for mechanical manipulators[J]. Journal of Dynamic Systems, Measurement, and Control, 1980, 102(2):69-76. [8] ARMSTRONG W W. Recursive solution to the equations of motion of an n-link manipulator[C]//Proceedings of the Fifth World Congress on Theory of Machines and Mechanisms. Montreal, Canada:American Society of Mechanical Engineers, 1979:1343-1346. [9] ORIN D E, MCGHEE R B, VUKOBRATOVIC M, et al. Kinematic and kinetic analysis of open-chain linkages utilizing Newton-Euler methods[J]. Mathematical Biosciences, 1979, 43(1-2):107-130. [10] RODRIGUEZ G. Kalman filtering, smoothing, and recursive robot arm forward and inverse dynamics[J]. IEEE Journal on Robotics and Automation, 1987, 3(6):624-639. [11] RODRIGUEZ G. Recursive forward dynamics for multiple robot arms moving a common task object[J]. IEEE Transactions on Robotics and Automation, 1989, 5(4):510-521. [12] KREUTZ D K, JAIN A, RODRIGUEZ G. Recursive formulation of operational space control[J]. The International Journal of Robotics Research, 1992, 11(4):320-328. [13] JAIN A. Robot and multibody dynamics:Analysis and algorithms[M]. New York:Springer, 2011. [14] JAIN A. Operational space inertia for closed-chain robotic systems[J]. Journal of Computational and Nonlinear Dynamics, 2014, 9(2):021015. [15] FEATHERSTONE R. The calculation of robot dynamics using articulated-body inertias[J]. The International Journal of Robotics Research, 1983, 2(1), 13-30. [16] FEATHERSTONE R. A divide-and-conquer articulated-body algorithm for parallel O (log (n)) calculation of rigid-body dynamics. Part 1:Basic algorithm[J]. The International Journal of Robotics Research, 1999, 18(9):867-875. [17] FEATHERSTONE R. A divide-and-conquer articulated-body algorithm for parallel O (log (n)) calculation of rigid-body dynamics, Part 2:Trees, loops, and accuracy[J]. The International Journal of Robotics Research, 1999, 18(9):876-892. [18] FEATHERSTONE R, ORIN D. Robot dynamics:Equations and algorithms[C]//Proceedings IEEE International Conference on Robotics and Automation. San Francisco, USA:IEEE, 2000:826-834. [19] FEATHERSTONE R. A beginner's guide to 6-D vectors (part 1)[J]. IEEE Robotics & Automation Magazine, 2010, 17(3):83-94. [20] FEATHERSTONE R. Rigid body dynamics algorithms[M]. Boston:Springer, 2008. [21] UCHIDA T U, MCPHEE J. Triangularizing kinematic constraint equations using Grö bner bases for real-time dynamic simulation[J]. Multibody System Dynamics, 2011, 25(3):335-356. [22] UCHIDA T U, MCPHEE J. Using Grö bner bases to generate efficient kinematic solutions for the dynamic simulation of multi-loop mechanisms[J]. Mechanism and Machine Theory, 2012, 52:144-157. [23] HOLLERBACH J M. A recursive Lagrangian formulation of maniputator dynamics and a comparative study of dynamics formulation complexity[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1980, 10(11):730-736. [24] UICKER J J. On the dynamic analysis of spatial linkages using 4×4 matrices[J]. PhD Dissertation, Northwestern University, 1965:70-77. [25] KAHN M E, ROTH B. The near-minimum-time control of open-loop articulated kinematic chains[J]. Journal of Dynamic Systems, Measurement, and Control, 1971, 93(3):164-172. [26] SILVER W M. On the equivalence of Lagrangian and Newton-Euler dynamics for manipulators[J]. The International Journal of Robotics Research, 1982, 1(2):60-70. [27] HEHUA J, BAOQIAN S, SHU L, et al. Hand book of space robotics:Axis-invariant based MAS modeling, planning and control[M]. New York:Springer Press., 2018. [28] BOOK W J. Recursive Lagrangian dynamics of flexible manipulator arms[J]. The International Journal of Robotics Research, 1984, 3(3):87-101. [29] SAYAHKARAJY M, MOHAMED Z, MOHD FAUDZI A A. Review of modelling and control of flexible-link manipulators[J]. Proceedings of the Institution of Mechanical Engineers, Part I:Journal of Systems and Control Engineering, 2016, 230(8):861-873. [30] PARK F C, KIM B, JANG C, et al. Geometric algorithms for robot dynamics:A tutorial review[J]. Applied Mechanics Reviews, 2018, 70(1):010803. [31] FELIS M L. RBDL:An efficient rigid-body dynamics library using recursive algorithms[J]. Autonomous Robots, 2017, 41(2):495-511. [32] IAGNEMMA K, KANG S, BROOKS C, et al. Multi-sensor terrain estimation for planetary rovers[C]//Proceedings of the 7th International Symposium on Artificial Intelligence, Robotics, and Automation in Space. New York, USA:IEEE Press, 2003. [33] BEKKER M G. Off-the-road locomotion:Research and development in terramechanics[M]. AnnArbor:University of Michigan Press, 1960. [34] BEKKER M G. Introduction to terrain-vehicle systems[M]. AnnArbor:University of Michigan Press, 1969. [35] JANOSI Z, HANAMOTO B. The analytical determination of drawbar pull as a function of slip for tracked vehicle in deformable soils[C]//Proceedings of the 1st Conference on International Terrain-Vehicle Systems. Torino, Italy, 1961. [36] WONG J Y. On the study of wheel-soil interaction[J]. Journal of Terramechanics, 1984, 21(2):117-131. [37] WONG J Y. Terramechanics and off-road vehicle engineering:Terrain behaviour, off-road vehicle performance and design[M]. Oxford:Butterworth-heinemann, 2009. [38] IAGNEMMA K, SHIBLY H, DUBOWSKY S. On-line terrain parameter estimation for planetary rovers[C]//Proceedings of 2002 IEEE International Conference on Robotics and Automation. Washington, USA:IEEE, 2002:3142-3147. [39] IAGNEMMA K, DUBOWSKY S. Mobile robots in rough terrain:Estimation, motion planning, and control with application to planetary rovers[M]. New York:Springer Publishing Company, Incorporated, 2010. [40] YOSHIDA K, HAMANO H. Motion dynamics of a rover with slip-based traction model[C]//Proceedings 2002 IEEE International Conference on Robotics and Automation. Washington, USA:IEEE, 2002:3155-3160. [41] YOSHIDA K, WATANABE T, MIZUNO N, et al. Terramechanics-based analysis and traction control of a lunar/planetary rover[M]//YUTA S, ASAMA H, PRASSLER E, et al. Field and service robotics. Berlin, Heidelberg:Springer, 2003:225-234. [42] YOSHIDA K, ISHIGAMI G. Steering characteristics of a rigid wheel for exploration on loose soil[C]//Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan:IEEE, 2004:3995-4000. [43] ISHIGAMI G, MIWA A, NAGATANI K, et al. Terramechanics-based model for steering maneuver of planetary exploration rovers on loose soil[J]. Journal of Field Robotics, 2007, 24(3):233-250. [44] 居鹤华, 田小二. 月面巡视器实时动力学建模与牵引控制[J]. 宇航学报, 2014, 35(7):743-752.JU H H, TIAN X E. Real-time dynamics modeling and traction control for lunar rover[J]. Journal of Astronautics, 2014, 35(7):743-752.(in Chinese) [45] 田小二. 基于弹塑性轮土力学及黏弹性运动副的月球车动力学研究[D]. 北京:北京工业大学, 2013.TIAN X E. The research on lunar rover dynamics based on elastoplastic wheel-terrain mechanics and viscoelastic kinematic pair[D]. Beijing:Beijing University of Technology, 2013.(in Chinese)