Abstract:This paper describes a miniaturized quantum key distribution (QKD) transmitter for the BB84 protocol for short-range QKD applications between portable devices and hosts. The transmitter uses silicon PN junctions to generate photons and wire-grid polarizers for the polarization encoding. It also uses a convex lens and an aperture for collimation as well as to eliminate the photon spatial information. Simulations indicate that the transmitter can support a raw key generation rate of 3 kb/s and the polarization extinction ratio of the generated photons in each polarization state can reach 20 dB. The transmitter height can be as small as 5 mm, so the device can be integrated into portable devices such as mobile phones.
[1] BENNETT C H, BRASSARD G. Quantum cryptography:Public key distribution and coin tossing[C]//Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. New York, USA:IEEE, 1984:175-179. [2] HWANG W Y. Quantum key distribution with high loss:Toward global secure communication[J]. Physical Review Letters, 2003, 91(5):057901. [3] YIN H L, CHEN T Y, YU Z W, et al. Measurement-device-independent quantum key distribution over a 404 km optical fiber[J]. Physical Review Letters, 2016, 117(19):190501. [4] SASAKI M, FUJIWARA M, ISHIZUKA H, et al. Field test of quantum key distribution in the Tokyo QKD network[J]. Optics Express, 2011, 19(11):10387-10409. [5] 倪振华, 李亚麟, 姜艳. 量子保密通信原理及其在电网中的应用探究[J]. 电力信息与通信技术, 2017, 15(10):43-49.NI Z H, LI Y L, JIANG Y. Brief introductionof quantum secure communications andthe application survey in state grid[J]. Electric Power Information and Communication Technology, 2017, 15(10):43-49. (in Chinese) [6] PEEV M, PACHER C, ALLÉAUME R, et al. The SECOQC quantum key distribution network in Vienna[J]. New Journal of Physics, 2009, 11(7):075001. [7] LIAO SK, CAI W Q, LIU W Y, et al. Satellite-to-ground quantum key distribution[J]. Nature, 2017, 549(7670):43-47. [8] DULIGALL J L, GODFREY M S, HARRISON K A, et al. Low cost and compact quantum key distribution[J]. New Journal of Physics, 2006, 8(10):249-256. [9] VEST G, RAU M, FUCHS L, et al. Design and evaluation of a handheld quantum key distribution sender module[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(3):6600607. [10] CHUN H, CHOI I, FAULKNER G, et al. Handheld free space quantum key distribution with dynamic motion compensation[J]. Optics Express, 2017, 25(6):6784-6795. [11] NEWMAN R. Visible light from a silicon PN junction[J]. Physical Review, 1955, 100(2):700-703. [12] CHYNOWETH A G, MCKAY K G. Photon emission from avalanche breakdown in silicon[J]. Physical Review, 1956, 102(2):369-376. [13] MICHAELIS W, PILKUHN M H. Radiative recombination in silicon PN junctions[J]. Physica Status Solidi B, 1969, 36(1):311-319. [14] SNYMAN L W, PLESSIS M D, AHARONI H. Three terminal n+ ppn silicon CMOS light emitting devices (450 nm-750 nm) with three order increase in quantum efficiency[C]//Proceedings of the IEEE International Symposium on Industrial Electronics. Dubrovnik, Croatia:IEEE, 2005:1159-1166. [15] PLESSIS D M, SNYMAN L W, AHARONI H. Low-voltage light emitting devices in silicon IC technology[C]//Proceedings of the IEEE International Symposium on Industrial Electronics, 2005. Dubrovnik, Croatia:IEEE, 2005:1145-1149. [16] GOODMAN J W. Introduction to Fourier optics[M]. 3rd ed. Englewood:Roberts and Company Publishers, 2005.