Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2019, Vol. 59 Issue (10): 823-830    DOI: 10.16511/j.cnki.qhdxxb.2019.22.024
  机械工程 本期目录 | 过刊浏览 | 高级检索 |
铝合金筒壁电弧增材制造数值模拟中分段弧形体热源模型的建立
董明晔1, 赵玥1,2, 贾金龙1, 李权3, 王福德3, 吴爱萍1,2,4
1. 清华大学 机械工程系, 北京 100084;
2. 清华大学 先进成形制造教育部重点实验室, 北京 100084;
3. 首都航天机械有限公司, 北京 100076;
4. 清华大学 摩擦学国家重点实验室, 北京 100084
Development of segmented cambered body heat source model in numerical simulations of aluminum alloy cylindrical walls
DONG Mingye1, ZHAO Yue1,2, JIA Jinlong1, LI Quan3, WANG Fude3, WU Aiping1,2,4
1. Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China;
2. Key Laboratory for Advanced Materials Processing Technology of Ministry of Education, Tsinghua University, Beijing 100084, China;
3. Capital Aerospace Machinery Corporation Limited, Beijing 100076, China;
4. State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
全文: PDF(9061 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为提升铝合金筒壁电弧增材制造数值模拟的计算效率,基于Goldak移动双椭球体热源在圆弧路径上的分段化与ABAQUS的二次开发,阐述了分段弧形体热源的数学推导过程;建立了有限元模型并进行了移动体热源、材料参数与边界条件的试验验证,模拟结果与试验结果吻合良好;利用3种分段策略进行计算并分析了计算精度与效率。分段策略的数值模拟结果与移动体热源的对比表明:热循环曲线的变化趋势一致,峰值温度的计算误差在8%以内;残余应力云图的分布规律一致,且计算结果对热源的分段段数不敏感;利用一段、四段、八段弧形体热源进行计算的总时间分别节约了98.24%、77.51%、65.96%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董明晔
赵玥
贾金龙
李权
王福德
吴爱萍
关键词 电弧增材制造铝合金筒壁数值模拟分段弧形体热源    
Abstract:To improve the wire and arc additive manufacturing (WAAM) numerical simulation efficiency of aluminum alloy cylindrical walls, a segmented cambered body heat source model was developed with its mathematical derivation clarified based on segmentation on circular path of the Goldak body heat source with secondary development on ABAQUS. The moving heat source, the material models and the boundary conditions were verified in a finite element model with the numerical results agreeing well with experimental data. The accuracy and efficiency of the WAAM numerical simulations were evaluated using three segmented computing strategies. Comparisons of the results using the three segmented computing strategies with those using the moving heat source show that the thermal cycles are similar with peak temperatures having less than 8% errors, the residual stress distributions are consistent and the results are not sensitive to the number of segments in the segmented sources. The use of one, four or eight segmented heat sources reduces the total computational time by 98.24%, 77.51% and 65.96%.
Key wordswire and arc additive manufacturing    aluminum alloy    cylindrical wall    numerical simulation    segmented cambered body heat source
收稿日期: 2019-03-05      出版日期: 2019-10-14
基金资助:国家重点研发计划(2018YFB1106000);航天一院高校联合创新基金(CALT201709)
通讯作者: 吴爱萍,教授,E-mail:wuaip@tsinghua.edu.cn     E-mail: wuaip@tsinghua.edu.cn
引用本文:   
董明晔, 赵玥, 贾金龙, 李权, 王福德, 吴爱萍. 铝合金筒壁电弧增材制造数值模拟中分段弧形体热源模型的建立[J]. 清华大学学报(自然科学版), 2019, 59(10): 823-830.
DONG Mingye, ZHAO Yue, JIA Jinlong, LI Quan, WANG Fude, WU Aiping. Development of segmented cambered body heat source model in numerical simulations of aluminum alloy cylindrical walls. Journal of Tsinghua University(Science and Technology), 2019, 59(10): 823-830.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.22.024  或          http://jst.tsinghuajournals.com/CN/Y2019/V59/I10/823
  表1 基板与焊丝各化学成分的质量分数
  表2 试验工艺参数
  图1 (网络版彩图)试验系统与铝合金筒壁试样
  图2 移动体热源三维及截面图
  图3 分段弧形体热源三维及截面图
  图4 基板和增材体的材料参数
  图5 网格划分与力学边界条件
  图6 计算结果与试验结果对比
  表3 A 点峰值温度
  表4 B 点峰值温度
  表5 径向残余应力的比较
  表6 切向残余应力的比较
  图7 C 点位置及热循环曲线计算结果
  表7 热循环曲线峰值温度的比较
  图8 (网络版彩图)残余应力计算结果
  表8 不同计算策略的加热增量步数与计算总时间的对比
[1] DEREKAR K S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium[J]. Materials Science and Technology, 2018, 34(8):895-916.
[2] DING D H, PAN Z X, CUIURI D, et al. Wire-feed additive manufacturing of metal components:Technologies, developments and future interests[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(1-4):465-481.
[3] FRAZIER W E. Metal additive manufacturing:A review[J]. Journal of Materials Engineering and Performance, 2014, 23(6):1917-1928.
[4] OU W, MUKHERJEE T, KNAPP G L, et al. Fusion zone geometries, cooling rates and solidification parameters during wire arc additive manufacturing[J]. International Journal of Heat and Mass Transfer, 2018, 127:1084-1094.
[5] GU J L, BAI J, DING J L, et al. Design and cracking susceptibility of additively manufactured Al-Cu-Mg alloys with tandem wires and pulsed arc[J]. Journal of Materials Processing Technology, 2018, 262:210-220.
[6] JIAN W, XIN L, WANG J T, et al. Grain morphology evolution and texture characterization of wire and arc additive manufactured Ti-6Al-4V[J]. Journal of Alloys and Compounds, 2018, 768:97-113.
[7] 段梦伟, 彭勇, 周琦, 等. 水浴PTIG微变形电弧增材制造工艺[J]. 焊接学报, 2018, 39(9):113-116. DUAN M W, PENG Y, ZHOU Q, et al. Micro-deformation PTIG wire and arc addictive manufacture under water bath[J]. Transactions of the China Welding Institution, 2018, 39(9):113-116. (in Chinese)
[8] 黄丹, 朱志华, 耿海滨, 等. 5A06铝合金TIG丝材-电弧增材制造工艺[J]. 材料工程, 2017, 45(3):66-72. HUANG D, ZHU Z H, GENG H B, et al. TIG wire and arc additive manufacturing of 5A06 aluminum alloy[J]. Journal of Materials Engineering, 2017, 45(3):66-72. (in Chinese)
[9] 张飞奇, 陈文革, 田美娇. Ti-6Al-4V丝材电弧增材制造钛合金的组织与性能[J]. 稀有金属材料与工程, 2018, 47(6):1890-1895. ZHANG F Q, CHEN W G, TIAN M J. Microstructure and properties of Ti-6Al-4V alloy by wire+arc additive manufacturing[J]. Rare Metal Materials and Engineering, 2018, 47(6):1890-1895. (in Chinese)
[10] 李晗嫣, 陈文革, 张飞奇, 等. 基于CAFE模拟钛合金丝材电弧增材制造凝固过程的组织演变[J]. 中国有色金属学报, 2018, 28(9):1775-1783. LI H Y, CHEN W G, ZHANG F Q, et al. Evolution of wire+arc additive manufactured titanium alloy during solidification process based on CAFE simulation[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(9):1775-1783. (in Chinese)
[11] 张炼, 张兆栋, 刘黎明. 316不锈钢TIG电弧增材制造成形规律研究[J]. 焊接技术, 2018, 47(4):10-14. ZHANG L, ZHANG Z D, LIU L M. Study on forming principles for TIG-based wire and arc additive manufacturing of 316 stainless steel[J]. Welding Technology, 2018, 47(4):10-14. (in Chinese)
[12] 朱士一, 高建成, 张海鸥, 等. 23Co13Ni11Cr3Mo钢电弧微铸锻增材制造组织性能研究[J]. 新技术与新工艺, 2018(8):59-62. ZHU S Y, GAO J C, ZHANG H O, et al. Research on structure property of 23Co13Ni11Cr3Mo steel formed by wire arc micro casting additive manufacture[J]. New Technology & New Process, 2018(8):59-62. (in Chinese)
[13] 杨海欧, 王健, 王冲, 等. 电弧增材制造TC4钛合金宏观晶粒演化规律[J]. 材料导报, 2018, 32(6):2028-2031. YANG H O, WANG J, WANG C, et al. Macrostructure evolution of TC4 titanium alloy fabricated by wire and arc additive manufacturing[J]. Materials Review, 2018, 32(6):2028-2031. (in Chinese)
[14] 杨平华, 高祥熙, 梁菁, 等. 金属增材制造技术发展动向及无损检测研究进展[J]. 材料工程, 2017, 45(9):13-21. YANG P H, GAO X X, LIANG J, et al. Development tread and NDT progress of metal additive manufacture technique[J]. Journal of Materials Engineering, 2017, 45(9):13-21. (in Chinese)
[15] 雷洋洋, 熊俊, 李蓉, 等. 基板厚度对薄壁件GMA增材制造温度场的影响[J]. 焊接学报, 2018, 39(5):73-76. LEI Y Y, XIONG J, LI R, et al. Influence of substrate thickness on the thermal process for thin-walled part in GMA-based additive manufacturing[J]. Transactions of the China Welding Institution, 2018, 39(5):73-76. (in Chinese)
[16] OGINO Y, ASAI S, HIRATA Y. Numerical simulation of WAAM process by a GMAW weld pool model[J]. Welding in the World, 2018, 62(2):393-401.
[17] LIU Y B, SUN Q J, SANG H B, et al. Microstructure and mechanical properties of additive manufactured steel-Al structure materials with nickel gradient layers[J]. China Welding, 2016, 25(1):8-14.
[18] NIKAM S H, JAIN N K. Three-dimensional thermal analysis of multi-layer metallic deposition by micro-plasma transferred arc process using finite element simulation[J]. Journal of Materials Processing Technology, 2017, 249:264-273.
[19] 苗玉刚, 曾阳, 王腾, 等. 基于BC-MIG焊的铝/钢异种金属增材制造工艺[J]. 焊接学报, 2015, 36(7):5-8. MIAO Y G, ZENG Y, WANG T, et al. Additive manufacturing process of aluminum/steel dissimilar metal based on BC-MIG welding[J]. Transactions of the China Welding Institution, 2015, 36(7):5-8. (in Chinese)
[20] 郑振太, 曹文杰, 许晓航, 等. 结合型分布带状分段移动体热源模型[J]. 焊接学报, 2010, 31(7):95-97, 104. ZHENG Z T, CAO W J, XU X H, et al. Segment-moving heat source model with strip-shape and combined distribution of heat flux[J]. Transactions of the China Welding Institution, 2010, 31(7):95-97, 104. (in Chinese)
[21] 李艳军, 吴爱萍, 刘德博, 等. 2219铝合金VPTIG焊接残余应力的数值分析[J]. 清华大学学报(自然科学版), 2016, 56(10):1037-1041. LI Y J, WU A P, LIU D B, et al. Numerical simulations of welding residual stresses in VPTIG-welded joints of the 2219 aluminum alloy[J]. Journal of Tsinghua University (Science & Technology), 2016, 56(10):1037-1041. (in Chinese)
[1] 张寒, 黄泽宇, 张国君, 欧阳葆华, 吴学民, 郑丽丽. 下料方式和流量分配对D4合成SiO2的影响[J]. 清华大学学报(自然科学版), 2020, 60(3): 233-238.
[2] 鲁立, 胡梦佳, 蔡志鹏, 李克俭, 吴瑶, 潘际銮. 核级管端法兰面在线堆焊修复的残余应力[J]. 清华大学学报(自然科学版), 2020, 60(1): 89-94.
[3] 章若茵, 吴保生. 牛栏江滇池补水工程取水防沙措施的模拟研究[J]. 清华大学学报(自然科学版), 2019, 59(5): 354-363.
[4] 张福宏, 陈举师, 高杨, 汲银凤. 煤层干式钻孔粉尘运动及粒径分布的数值模拟[J]. 清华大学学报(自然科学版), 2018, 58(10): 872-880.
[5] 张展博, 李胜强. 圆柱水箱中水平多孔挡板对液面晃动影响的数值模拟研究[J]. 清华大学学报(自然科学版), 2018, 58(10): 934-940.
[6] 杨明祥, 王浩, 蒋云钟, 雷晓辉, 宋健蛟. 基于数值模拟的雅砻江流域风能资源初步评估[J]. 清华大学学报(自然科学版), 2018, 58(1): 101-107.
[7] 康举, 梁苏莹, 吴爱萍, 王国庆. 2219-T8铝合金搅拌摩擦焊接头在酸性介质中的腐蚀行为[J]. 清华大学学报(自然科学版), 2017, 57(5): 465-470.
[8] 赖兴华, 王磊, 李洁, 姜亚洲, 夏勇. 铝型材防撞梁的碰撞断裂失效表征[J]. 清华大学学报(自然科学版), 2017, 57(5): 504-510.
[9] 王岩, 黄弘, 黄丽达, 李云涛. 土壤大气耦合的燃气泄漏扩散数值模拟[J]. 清华大学学报(自然科学版), 2017, 57(3): 274-280.
[10] 李艳军, 吴爱萍, 刘德博, 赵海燕, 赵玥, 王国庆. 2219铝合金VPTIG焊接残余应力的数值分析[J]. 清华大学学报(自然科学版), 2016, 56(10): 1037-1041,1046.
[11] 景李玥, 霍佳龙, 姚兆普, 游小清, 朱民. ADN基液体推进剂空间发动机工作过程模拟[J]. 清华大学学报(自然科学版), 2016, 56(10): 1085-1090.
[12] 刘思, 张永良. 多向不规则波群传播的数值模拟[J]. 清华大学学报(自然科学版), 2015, 55(12): 1289-1295.
[13] 李想, 顾春伟. 轴流压气机带冠静叶和不带冠静叶的比较研究[J]. 清华大学学报(自然科学版), 2015, 55(12): 1361-1366.
[14] 管清亮, 毕大鹏, 吴玉新, 张建胜. 气流床煤加氢气化反应器的数值模拟及流场特性分析[J]. 清华大学学报(自然科学版), 2015, 55(10): 1098-1104.
[15] 王春财, 程嘉, 季林红, 路益嘉, 孙钰淳, 林嘉. 基于Delaunay三角形网格的2维DSMC算法实现及应用[J]. 清华大学学报(自然科学版), 2015, 55(10): 1079-1086,1097.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn