Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (3): 248-253    DOI: 10.16511/j.cnki.qhdxxb.2019.22.048
  核能与新能源工程 本期目录 | 过刊浏览 | 高级检索 |
高炉熔渣颗粒热物性参数的瞬间测量
张衍国1, 张颖2, 杨潇潇1
1. 清华大学 能源与动力工程系, 热科学与动力工程教育部重点实验室, 清华大学-滑铁卢大学微纳米能源环境联合研究中心, 北京 100084;
2. 北京立化科技有限公司, 北京 100085
Instantaneous measurements of granular blast furnace slag thermal parameters
ZHANG Yanguo1, ZHANG Ying2, YANG Xiaoxiao1
1. Tsinghua University-University of Waterloo Joint Research Center for Micro/Nano Energy & Environment Technology, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China;
2. Beijing LiHua Science Technology Co., Ltd., Beijing 100085, China
全文: PDF(3516 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 为了开发冶炼熔渣干法粒化和余热回收技术,提出了一种飞行高炉熔渣颗粒表面温度与发射率的瞬间测量方法。实验过程中,建立了熔渣表面温度与灰度、表面发射率与表面温度的关系曲线,通过高速摄像机瞬间捕捉飞行熔渣颗粒图像,计算图像灰度,结合关系曲线得到飞行熔渣颗粒表面温度和表面发射率。结果表明:随着熔渣表面温度的降低,表面发射率减小;当飞行熔渣颗粒表面温度为1 402℃时,其表面发射率约为0.89。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张衍国
张颖
杨潇潇
关键词 表面温度高炉熔渣干法粒化余热回收表面发射率    
Abstract:An instantaneous measurement method was developed to measure the surface temperature and surface emissivity of blast furnace slag for investigating dry granulation and waste heat recovery from blast furnace slag. The system was used to measure temperature-gray scale and emissivity-temperature relationships from granular blast furnace slag images captured by a high-speed camera based on the surface gray scale level. The surface temperature and the surface emissivity of the granular blast furnace slag could then be obtained by combining the measured surface gray scale with these relationships for the granular blast furnace slag. The results show that the surface emissivity decreases with decreasing slag surface temperature. The slag surface emissivity is about 0.89 at 1 402℃.
Key wordssurface temperature    blast furnace slag    dry granulation    waste heat recovery    surface emissivity
收稿日期: 2019-08-21      出版日期: 2020-03-03
基金资助:国家重点研发计划(2017YFB0603601)
引用本文:   
张衍国, 张颖, 杨潇潇. 高炉熔渣颗粒热物性参数的瞬间测量[J]. 清华大学学报(自然科学版), 2020, 60(3): 248-253.
ZHANG Yanguo, ZHANG Ying, YANG Xiaoxiao. Instantaneous measurements of granular blast furnace slag thermal parameters. Journal of Tsinghua University(Science and Technology), 2020, 60(3): 248-253.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.22.048  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I3/248
  图1 温度与发射率瞬间测量实验装置图
  图2 拍摄距离对图像灰度的影响
  图3 T-Gray实验数据及拟合曲线
  图4 高炉熔渣表面降温的图像
  图5 测量距离对发射率的影响
  图6 发射率-温度实验数据及拟合曲线
  图7 飞行熔渣颗粒表面温度随时间间隔变化曲线
  图8 飞行熔渣颗粒表面发射率随时间间隔变化曲线
  图9 黑体炉的发射率测量结果
[1] 谢锴. 处理高炉渣的先进方法:干式成粒法[J]. 冶金能源, 2002, 21(1):49-51. XIE K. The advanced method of disposing blast furnace slag:DSG[J]. Energy for Metallurgical Industry, 2002, 21(1):49-51. (in Chinese)
[2] 国家统计局. 中国统计年鉴. (2017-09-01). http://www.stats.gov.cn/tjsj/ndsj/2017/indexch.htm. National Bureau of Statistics of China. China statistical yearbook. (2017-09-01). http://www.stats.gov.cn/tjsj/ndsj/2017/indexch.htm. (in Chinese)
[3] 闫兆民, 周扬民, 杨志远, 等. 高炉渣综合利用现状及发展趋势[J]. 钢铁研究, 2010, 38(2):53-56. YAO Z M, ZHOU Y M, YANG Z Y, et al. Present situation and development trend of blast furnace slag comprehensive utilization[J]. Research on Iron and Steel, 2010, 38(2):53-56. (in Chinese)
[4] 李玉琴, 王红兵. 高炉渣显热回收利用技术现状研究[J]. 安徽冶金, 2016(2):30-34. LI Y Q, WANG H B. A study on the current state of recovery technology for sensible heat in BF slag[J]. Anhui Metallurgy, 2016(2):30-34. (in Chinese)
[5] BISIO G. Energy recovery from molten slag and exploitation of the recovered energy[J]. Energy, 1997, 22(5):501-509.
[6] YOSHINAGA M, FUJII K, SHIGEMATSU T, et al. Dry granulation and solidification of molten blast furnace slag[J]. Transactions of the Iron and Steel Institute of Japan, 1982, 22(11):823-829.
[7] 杜滨, 罗光亮, 姜荣泉. 熔渣干法粒化及余热回收技术进展[J]. 干燥技术与设备, 2012, 10(4):3-13. DU B, LUO G L, JIANG R Q. Development of molten slag dry granulation and heat recovery[J]. Drying Technology & Equipment, 2012, 10(4):3-13. (in Chinese)
[8] 于庆波, 刘军祥, 窦晨曦, 等. 转杯法高炉渣粒化实验研究[J]. 东北大学学报(自然科学版), 2009, 30(8):1163-1165, 1173. YU Q B, LIU J X, DOU C X, et al. Dry granulation experiment of blast furnace slag by rotary cup atomizer[J]. Journal of Northeastern University (Natural Science), 2009, 30(8):1163-1165, 1173. (in Chinese)
[9] FEATHERSTONE W B, HOLLIDAY K A. Slag treatment improvement by dry granulation[J]. Iron and Steel Engineer, 1998, 75(7):42-46.
[10] 张衍国, 李清海, 徐可培. 一种冶金熔渣粒化及其热能回收系统与方法:CN201410671009.5. 2015-03-04. ZHANG Y G, LI Q H, XU K P. System and method for granulating metallurgical slag and recovering thermal energy of metallurgical slag:CN201410671009.5. 2015-03-04. (in Chinese)
[11] 姜志伟, 周怀春. 循环流化床锅炉火焰温度及黑度图像检测[J]. 工程热物理学报, 2009, 30(11):1953-1956. JIANG Z W, ZHOU H C. Detection of flame temperature and emissivity image in a CFB boiler[J]. Journal of Engineering Thermophysics, 2009, 30(11):1953-1956. (in Chinese)
[12] 刘晴晴, 杨友良, 马翠红. 熔融金属的CCD图像传感测温方法研究[J]. 工业控制计算机, 2018, 31(2):41-43. LIU Q Q, YANG Y L, MA C H. Molten metal CCD image sensing and temperature measuring method based on mixed programming of C# and MATLAB[J]. Industrial Control Computer, 2018, 31(2):41-43. (in Chinese)
[13] 黄希桥, 李前翔, 王苗苗, 等. CCD测温中火焰温度与颜色的关系[J]. 西北工业大学学报, 2017, 35(3):442-447. HUANG X Q, LI Q X, WANG M M, et al. The relation of the temperature and color of the flame of the CCD temperature measurement[J]. Journal of Northwestern Polytechnical University, 2017, 35(3):442-447. (in Chinese)
[14] 郭凯, 卢山鹰. 基于CCD图像传感器的火焰温度场测量的研究[J]. 物联网技术, 2014(3):33-35. GUO K, LU S Y. Research on flame temperature field measurement based on CCD image sensor[J]. Internet of Things Technologies, 2014(3):33-35. (in Chinese)
[15] PURWANTO H, MIZUOCHI T, AKIYAMA T. Prediction of granulated slag properties produced from spinning disk atomizer by mathematical model[J]. Materials Transactions, 2005, 46(6):1324-1330.
[16] 邢宏伟, 王晓娣, 龙跃, 等. 粒化钢渣相变传热过程数值模拟[J]. 钢铁钒钛, 2010, 31(1):79-83. XING H W, WANG X D, LONG Y, et al. Numerical simulating for phase-change heat transfer process of slag granule[J]. Iron Steel Vanadium Titanium, 2010, 31(1):79-83. (in Chinese)
[17] 刘小英, 朱恂, 廖强, 等. 高温熔融高炉渣颗粒相变冷却特性分析[J]. 化工学报, 2014, 65(S1):285-291. LIU X Y, ZHU X, LIAO Q, et al. Theoretic analysis on transient solidification behaviors of a molten blast furnace slag particle[J]. CIESC Journal, 2014, 65(S1):285-291. (in Chinese)
[18] 程晓舫, 周洲. 彩色三基色温度测量原理的研究[J]. 中国科学E辑:科学技术, 1997, 27(4):342-345. CHENG X F, ZHOU Z. Principle study of temperature measurement based on primary colors[J]. Science in China Series E:Technological Sciences, 1997, 27(4):342-345. (in Chinese)
[19] 张衍国, 李清海. 一种监测飞行中高温颗粒温度场的装置和方法:CN201710703186.0. 2017-12-29. ZHANG Y G, LI Q H. Device and method for monitoring high-temperature particle temperature field in flight:CN201710703186.0. 2017-12-29. (in Chinese)
[20] 李清海, 张衍国. 一种确定运动中高温颗粒表观发射率的装置和方法:CN201710703785.2. 2017-12-15. LI Q H, ZHANG Y G. Device and method for determining apparent emissivity of high-temperature particles in motion:CN201710703785.2. 2017-12-15. (in Chinese)
[21] 唐麟, 刘琳, 苏君红. 红外图像噪声建模及仿真研究[J]. 红外技术, 2014, 36(7):542-548. TANG L, LIU L, SU J H. Modeling and simulation research of infrared image noise[J]. Infrared Technology, 2014, 36(7):542-548. (in Chinese)
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn