Instantaneous measurements of granular blast furnace slag thermal parameters
ZHANG Yanguo1, ZHANG Ying2, YANG Xiaoxiao1
1. Tsinghua University-University of Waterloo Joint Research Center for Micro/Nano Energy & Environment Technology, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China; 2. Beijing LiHua Science Technology Co., Ltd., Beijing 100085, China
Abstract:An instantaneous measurement method was developed to measure the surface temperature and surface emissivity of blast furnace slag for investigating dry granulation and waste heat recovery from blast furnace slag. The system was used to measure temperature-gray scale and emissivity-temperature relationships from granular blast furnace slag images captured by a high-speed camera based on the surface gray scale level. The surface temperature and the surface emissivity of the granular blast furnace slag could then be obtained by combining the measured surface gray scale with these relationships for the granular blast furnace slag. The results show that the surface emissivity decreases with decreasing slag surface temperature. The slag surface emissivity is about 0.89 at 1 402℃.
[1] 谢锴. 处理高炉渣的先进方法:干式成粒法[J]. 冶金能源, 2002, 21(1):49-51. XIE K. The advanced method of disposing blast furnace slag:DSG[J]. Energy for Metallurgical Industry, 2002, 21(1):49-51. (in Chinese) [2] 国家统计局. 中国统计年鉴. (2017-09-01). http://www.stats.gov.cn/tjsj/ndsj/2017/indexch.htm. National Bureau of Statistics of China. China statistical yearbook. (2017-09-01). http://www.stats.gov.cn/tjsj/ndsj/2017/indexch.htm. (in Chinese) [3] 闫兆民, 周扬民, 杨志远, 等. 高炉渣综合利用现状及发展趋势[J]. 钢铁研究, 2010, 38(2):53-56. YAO Z M, ZHOU Y M, YANG Z Y, et al. Present situation and development trend of blast furnace slag comprehensive utilization[J]. Research on Iron and Steel, 2010, 38(2):53-56. (in Chinese) [4] 李玉琴, 王红兵. 高炉渣显热回收利用技术现状研究[J]. 安徽冶金, 2016(2):30-34. LI Y Q, WANG H B. A study on the current state of recovery technology for sensible heat in BF slag[J]. Anhui Metallurgy, 2016(2):30-34. (in Chinese) [5] BISIO G. Energy recovery from molten slag and exploitation of the recovered energy[J]. Energy, 1997, 22(5):501-509. [6] YOSHINAGA M, FUJII K, SHIGEMATSU T, et al. Dry granulation and solidification of molten blast furnace slag[J]. Transactions of the Iron and Steel Institute of Japan, 1982, 22(11):823-829. [7] 杜滨, 罗光亮, 姜荣泉. 熔渣干法粒化及余热回收技术进展[J]. 干燥技术与设备, 2012, 10(4):3-13. DU B, LUO G L, JIANG R Q. Development of molten slag dry granulation and heat recovery[J]. Drying Technology & Equipment, 2012, 10(4):3-13. (in Chinese) [8] 于庆波, 刘军祥, 窦晨曦, 等. 转杯法高炉渣粒化实验研究[J]. 东北大学学报(自然科学版), 2009, 30(8):1163-1165, 1173. YU Q B, LIU J X, DOU C X, et al. Dry granulation experiment of blast furnace slag by rotary cup atomizer[J]. Journal of Northeastern University (Natural Science), 2009, 30(8):1163-1165, 1173. (in Chinese) [9] FEATHERSTONE W B, HOLLIDAY K A. Slag treatment improvement by dry granulation[J]. Iron and Steel Engineer, 1998, 75(7):42-46. [10] 张衍国, 李清海, 徐可培. 一种冶金熔渣粒化及其热能回收系统与方法:CN201410671009.5. 2015-03-04. ZHANG Y G, LI Q H, XU K P. System and method for granulating metallurgical slag and recovering thermal energy of metallurgical slag:CN201410671009.5. 2015-03-04. (in Chinese) [11] 姜志伟, 周怀春. 循环流化床锅炉火焰温度及黑度图像检测[J]. 工程热物理学报, 2009, 30(11):1953-1956. JIANG Z W, ZHOU H C. Detection of flame temperature and emissivity image in a CFB boiler[J]. Journal of Engineering Thermophysics, 2009, 30(11):1953-1956. (in Chinese) [12] 刘晴晴, 杨友良, 马翠红. 熔融金属的CCD图像传感测温方法研究[J]. 工业控制计算机, 2018, 31(2):41-43. LIU Q Q, YANG Y L, MA C H. Molten metal CCD image sensing and temperature measuring method based on mixed programming of C# and MATLAB[J]. Industrial Control Computer, 2018, 31(2):41-43. (in Chinese) [13] 黄希桥, 李前翔, 王苗苗, 等. CCD测温中火焰温度与颜色的关系[J]. 西北工业大学学报, 2017, 35(3):442-447. HUANG X Q, LI Q X, WANG M M, et al. The relation of the temperature and color of the flame of the CCD temperature measurement[J]. Journal of Northwestern Polytechnical University, 2017, 35(3):442-447. (in Chinese) [14] 郭凯, 卢山鹰. 基于CCD图像传感器的火焰温度场测量的研究[J]. 物联网技术, 2014(3):33-35. GUO K, LU S Y. Research on flame temperature field measurement based on CCD image sensor[J]. Internet of Things Technologies, 2014(3):33-35. (in Chinese) [15] PURWANTO H, MIZUOCHI T, AKIYAMA T. Prediction of granulated slag properties produced from spinning disk atomizer by mathematical model[J]. Materials Transactions, 2005, 46(6):1324-1330. [16] 邢宏伟, 王晓娣, 龙跃, 等. 粒化钢渣相变传热过程数值模拟[J]. 钢铁钒钛, 2010, 31(1):79-83. XING H W, WANG X D, LONG Y, et al. Numerical simulating for phase-change heat transfer process of slag granule[J]. Iron Steel Vanadium Titanium, 2010, 31(1):79-83. (in Chinese) [17] 刘小英, 朱恂, 廖强, 等. 高温熔融高炉渣颗粒相变冷却特性分析[J]. 化工学报, 2014, 65(S1):285-291. LIU X Y, ZHU X, LIAO Q, et al. Theoretic analysis on transient solidification behaviors of a molten blast furnace slag particle[J]. CIESC Journal, 2014, 65(S1):285-291. (in Chinese) [18] 程晓舫, 周洲. 彩色三基色温度测量原理的研究[J]. 中国科学E辑:科学技术, 1997, 27(4):342-345. CHENG X F, ZHOU Z. Principle study of temperature measurement based on primary colors[J]. Science in China Series E:Technological Sciences, 1997, 27(4):342-345. (in Chinese) [19] 张衍国, 李清海. 一种监测飞行中高温颗粒温度场的装置和方法:CN201710703186.0. 2017-12-29. ZHANG Y G, LI Q H. Device and method for monitoring high-temperature particle temperature field in flight:CN201710703186.0. 2017-12-29. (in Chinese) [20] 李清海, 张衍国. 一种确定运动中高温颗粒表观发射率的装置和方法:CN201710703785.2. 2017-12-15. LI Q H, ZHANG Y G. Device and method for determining apparent emissivity of high-temperature particles in motion:CN201710703785.2. 2017-12-15. (in Chinese) [21] 唐麟, 刘琳, 苏君红. 红外图像噪声建模及仿真研究[J]. 红外技术, 2014, 36(7):542-548. TANG L, LIU L, SU J H. Modeling and simulation research of infrared image noise[J]. Infrared Technology, 2014, 36(7):542-548. (in Chinese)