Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
Abstract:The flow field between neighboring blades strongly affects the gas-solid separation in air classifiers. The flow field between adjacent blades in a turbo air classifier was measured using a PIV (particle image velocimetry) system for various impeller rotational speeds and air flow rates. A coordinate transformation based algorithm was then used to analyze the relative motion between the particles and the blades. The relative tangential and radial velocity profiles at the blade passage inlet were also analyzed for various rotational speeds along with the changes of the vortex position and vorticity. As the rotational speed increases, the vortex first moves outwards and then inwards as the vorticity first increases and then decreases. The vortex position does not change much as the air flow rate increases, while the vorticity increases greatly. The overall separation efficiency first increases and then decreases as the rotational speed increases, while the cut size first decreases and then increases. These non-linear relationships correspond to the effect of the impeller rotational speed on the vortex position and the relative tangential velocity. The flow field analysis based on the coordinate transformation helps eliminate camera positioning errors and improves understanding of the gas-solid flow relative to the impeller.
[1] GUIZANI R, MOKNI I, MHIRI H, et al. CFD modeling and analysis of the fish-hook effect on the rotor separator's efficiency[J]. Powder Technology, 2014, 264:149-157. [2] BAUDER A, MÜLLER F, POLKE R. Investigations concerning the separation mechanism in deflector wheel classifiers[J]. International Journal of Mineral Processing, 2004, 74:S147-S154. [3] GAO L P, YU Y, LIU J X. Study on the cut size of a turbo air classifier[J]. Powder Technology, 2013, 237:520-528. [4] MORIMOTO H, SHAKOUCHI T. Classification of ultra fine powder by a new pneumatic type classifier[J]. Powder Technology, 2003, 131(1):71-79. [5] SHAPIRO M, GALPERIN V. Air classification of solid particles:A review[J]. Chemical Engineering and Processing, 2005, 44(2):279-285. [6] 杨庆良, 刘家祥. 涡流空气分级机内流场分析与转笼结构改进[J]. 化学工程, 2010, 38(1):79-83. YANG Q L, LIU J X. Analysis of flow field in turbo air classifier and improvement of rotor cage structure[J]. Chemical Engineering, 2010, 38(1):79-83. (in Chinese) [7] 谌永祥, 荣云, 李双跃, 等. 进口风速和转速对涡流空气分级机流场的影响[J]. 浙江工业大学学报, 2015, 43(5):517-521. CHEN Y X, RONG Y, LI S Y, et al. Effect of inlet wind speed and rotating speed on flow field of vortex air classifier[J]. Journal of Zhejiang University of Technology, 2015, 43(5):517-521. (in Chinese) [8] 高利苹, 于源, 刘家祥. 涡流空气分级机转笼转速对其分级精度的影响[J]. 化工学报, 2012, 63(4):1056-1062. GAO L P, YU Y, LIU J X. Effect of rotor cage rotary speed on classification accuracy in turbo air classifier[J]. CIESC Journal, 2012, 63(4):1056-1062. (in Chinese) [9] 岳大鑫, 刁雄, 李双跃, 等. 基于颗粒轨迹分析的分级机切割粒径计算[J]. 化工进展, 2012, 31(9):1919-1925. YUE D X, DIAO X, LI S Y, et al. Computation of classifier cut size based on analysis of particle tracks[J]. Chemical Industry and Engineering Progress, 2012, 31(9):1919-1925. (in Chinese) [10] GALK J, PEUKERT W, KRAHNEN J. Industrial classification in a new impeller wheel classifier[J]. Powder Technology, 1999, 105(1-3):186-189. [11] LIU R R, LIU J X, YU Y. Effects of axial inclined guide vanes on a turbo air classifier[J]. Powder Technology, 2015, 280:1-9. [12] 李进春, 李双跃, 任朝富. 涡流分级机异形叶片的数值模拟与试验研究[J]. 中国粉体技术, 2009, 15(3):1-4. LI J C, LI S Y, REN C F, et al. Study on heteromorphic vanes of vortex air classifier by numerical simulations and experiments[J]. China Powder Science and Technology, 2009, 15(3):1-4. (in Chinese) [13] 黄强, 于源, 刘家祥. 涡流分级机转笼结构改进及内部流场数值模拟[J]. 化工学报, 2011, 62(5):1264-1268. HUANG Q, YU Y, LIU J X. Improvement on rotor cage structure of turbo air classifier and numerical simulation of inner flow field[J]. CIESC Journal, 2011, 62(5):1264-1268. (in Chinese) [14] YU Y, LIU J X, ZHANG K. Establishment of a prediction model for the cut size of turbo air classifiers[J]. Powder Technology, 2014, 254:274-280. [15] ALTUN O, BENZER H. Selection and mathematical modelling of high efficiency air classifiers[J]. Powder Technology, 2014, 264:1-8. [16] 张胜林, 谌永祥, 李双跃. 涡流空气分级机工艺参数对窄级别产品粒径分布和产率的影响[J]. 化工进展, 2014, 33(5):1113-1117, 1155. ZHANG S L, CHEN Y X, LI S Y. Effects of process parameters on particle size distribution and productivity of narrow level product in turbo air classifier[J]. Chemical Industry and Engineering Progress, 2014, 33(5):1113-1117, 1155. (in Chinese) [17] AFOLABI L, AROUSSI A, ISA N M. Numerical modelling of the carrier gas phase in a laboratory-scale coal classifier model[J]. Fuel Processing Technology, 2011, 92(3):556-562. [18] TONEVA P, EPPLE P, BREUER M, et al. Grinding in an air classifier mill-Part I:Characterisation of the one-phase flow[J]. Powder Technology, 2011, 211(1):19-27. [19] TONEVA P, WIRTH K E, PEUKERT W. Grinding in an air classifier mill-Part II:Characterisation of the two-phase flow[J]. Powder Technology, 2011, 211(1):28-37. [20] VUTHALURU H B, PAREEK V K, VUTHALURU R. Multiphase flow simulation of a simplified coal pulveriser[J]. Fuel Processing Technology, 2005, 86(11):1195-1205. [21] KARUNAKUMARI L, ESWARAIAH C, JAYANTI S, et al. Experimental and numerical study of a rotating wheel air classifier[J]. AIChE Journal, 2005, 51(3):776-790. [22] 祝良明, 李双跃. SLK分级机两种进风口的数值模拟与实验[J]. 化工进展, 2013, 32(3):533-537. ZHU L M, LI S Y. Numerical simulation and experimental research about two kinds of air inlets in SLK classifier[J]. Chemical Industry and Engineering Progress, 2013, 32(3):533-537. (in Chinese) [23] HUANG Q, LIU J X, YU Y. Turbo air classifier guide vane improvement and inner flow field numerical simulation[J]. Powder Technology, 2012, 226:10-15. [24] 孙占朋, 孙国刚, 杨晓楠, 等. 竖直涡旋向对卧轮式分级机流场及性能影响[J]. 化工进展, 2017, 36(6):2045-2050. SUN Z P, SUN G G, YANG X N, et al. Effect of vertical vortex direction on flow field and performance of horizontal turbo air classifier[J]. Chemical Industry and Engineering Progress, 2017, 36(6):2045-2050. (in Chinese) [25] GUO L J, LIU J X, LIU S Z, et al. Velocity measurements and flow field characteristic analyses in a turbo air classifier[J]. Powder Technology, 2007, 178(1):10-16. [26] FENG Y G, LIU J X, LIU S Z. Effects of operating parameters on flow field in a turbo air classifier[J]. Minerals Engineering, 2008, 21(8):598-604. [27] XING W J, WANG Y Z, ZHANG Y, et al. Experimental study on velocity field between two adjacent blades and gas-solid separation of a turbo air classifier[J]. Powder Technology, 2015, 286:240-245. [28] MORTENSEN H H, CALABRESE R V, INNINGS F, et al. Characteristics of batch rotor-stator mixer performance elucidated by shaft torque and angle resolved PIV measurements[J]. The Canadian Journal of Chemical Engineering, 2011, 89(5):1076-1095. [29] RANADE V V, PERRARD M, LE SAUZE N, et al. Trailing vortices of Rushton turbine:PIV measurements and CFD simulations with snapshot approach[J]. Chemical Engineering Research and Design, 2001, 79(1):3-12. [30] SHARP K V, ADRIAN R J. PIV study of small-scale flow structure around a Rushton turbine[J]. AIChE Journal, 2001, 47(4):766-778.