Please wait a minute...
 首页  期刊介绍 期刊订阅 联系我们 横山亮次奖 百年刊庆
 
最新录用  |  预出版  |  当期目录  |  过刊浏览  |  阅读排行  |  下载排行  |  引用排行  |  横山亮次奖  |  百年刊庆
清华大学学报(自然科学版)  2020, Vol. 60 Issue (6): 493-499    DOI: 10.16511/j.cnki.qhdxxb.2020.25.018
  专题:能源领域中的多相流动基础及应用 本期目录 | 过刊浏览 | 高级检索 |
转轮分离器风量和转速对叶片流道涡的影响
冯乐乐, 吴玉新, 张海, 张扬, 岳光溪
清华大学 能源与动力工程系, 热科学与动力工程教育部重点实验室, 北京 100084
Effect of air flow rate and rotational speed on vortices between neighboring blades in turbo air classifiers
FENG Lele, WU Yuxin, ZHANG Hai, ZHANG Yang, YUE Guangxi
Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
全文: PDF(2194 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 研究转轮分离器相邻叶片间的流场对理解其气固分离行为非常重要。为此,该文利用粒子图像测速(particle image velocimetry,PIV)测量了不同转速、风量下转轮分离器叶片流道间的流场,然后利用坐标变换算法分析了相对切向速度和径向速度随转速的变化,并定量分析了叶片流道间旋涡的位置和涡量随转速、风量的变化。实验结果表明:在实验范围内,随着转速提高,旋涡先往转轮外部移动,再往转轮内部移动;随着转速提高,旋涡涡量先增大后减小;随着风量提高,旋涡位置变化不明显,而旋涡涡量不断增大;随着转速提高,总分离效率先升高后降低,切割粒径先减小后增大。这种非单调趋势可以用叶片间旋涡位置的变化和流道入口处相对切向速度的变化来解释。基于坐标变换的转轮机械流场分析可以避免拍摄时相机定位的误差,也便于分析气体相对于转动叶轮的运动。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冯乐乐
吴玉新
张海
张扬
岳光溪
关键词 粒子分离粒子图像测速(PIV)算法颗粒流旋涡    
Abstract:The flow field between neighboring blades strongly affects the gas-solid separation in air classifiers. The flow field between adjacent blades in a turbo air classifier was measured using a PIV (particle image velocimetry) system for various impeller rotational speeds and air flow rates. A coordinate transformation based algorithm was then used to analyze the relative motion between the particles and the blades. The relative tangential and radial velocity profiles at the blade passage inlet were also analyzed for various rotational speeds along with the changes of the vortex position and vorticity. As the rotational speed increases, the vortex first moves outwards and then inwards as the vorticity first increases and then decreases. The vortex position does not change much as the air flow rate increases, while the vorticity increases greatly. The overall separation efficiency first increases and then decreases as the rotational speed increases, while the cut size first decreases and then increases. These non-linear relationships correspond to the effect of the impeller rotational speed on the vortex position and the relative tangential velocity. The flow field analysis based on the coordinate transformation helps eliminate camera positioning errors and improves understanding of the gas-solid flow relative to the impeller.
Key wordsparticle separation    particle image velocimetry (PIV)    algorithm    granular flow    vortex
收稿日期: 2019-09-20      出版日期: 2020-04-27
基金资助:国家自然科学基金资助项目(51761125011)
通讯作者: 吴玉新,副教授,E-mail:wuyx09@tsinghua.edu.cn     E-mail: wuyx09@tsinghua.edu.cn
引用本文:   
冯乐乐, 吴玉新, 张海, 张扬, 岳光溪. 转轮分离器风量和转速对叶片流道涡的影响[J]. 清华大学学报(自然科学版), 2020, 60(6): 493-499.
FENG Lele, WU Yuxin, ZHANG Hai, ZHANG Yang, YUE Guangxi. Effect of air flow rate and rotational speed on vortices between neighboring blades in turbo air classifiers. Journal of Tsinghua University(Science and Technology), 2020, 60(6): 493-499.
链接本文:  
http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2020.25.018  或          http://jst.tsinghuajournals.com/CN/Y2020/V60/I6/493
  
  
  
  
  
  
  
  
[1] GUIZANI R, MOKNI I, MHIRI H, et al. CFD modeling and analysis of the fish-hook effect on the rotor separator's efficiency[J]. Powder Technology, 2014, 264:149-157.
[2] BAUDER A, MÜLLER F, POLKE R. Investigations concerning the separation mechanism in deflector wheel classifiers[J]. International Journal of Mineral Processing, 2004, 74:S147-S154.
[3] GAO L P, YU Y, LIU J X. Study on the cut size of a turbo air classifier[J]. Powder Technology, 2013, 237:520-528.
[4] MORIMOTO H, SHAKOUCHI T. Classification of ultra fine powder by a new pneumatic type classifier[J]. Powder Technology, 2003, 131(1):71-79.
[5] SHAPIRO M, GALPERIN V. Air classification of solid particles:A review[J]. Chemical Engineering and Processing, 2005, 44(2):279-285.
[6] 杨庆良, 刘家祥. 涡流空气分级机内流场分析与转笼结构改进[J]. 化学工程, 2010, 38(1):79-83. YANG Q L, LIU J X. Analysis of flow field in turbo air classifier and improvement of rotor cage structure[J]. Chemical Engineering, 2010, 38(1):79-83. (in Chinese)
[7] 谌永祥, 荣云, 李双跃, 等. 进口风速和转速对涡流空气分级机流场的影响[J]. 浙江工业大学学报, 2015, 43(5):517-521. CHEN Y X, RONG Y, LI S Y, et al. Effect of inlet wind speed and rotating speed on flow field of vortex air classifier[J]. Journal of Zhejiang University of Technology, 2015, 43(5):517-521. (in Chinese)
[8] 高利苹, 于源, 刘家祥. 涡流空气分级机转笼转速对其分级精度的影响[J]. 化工学报, 2012, 63(4):1056-1062. GAO L P, YU Y, LIU J X. Effect of rotor cage rotary speed on classification accuracy in turbo air classifier[J]. CIESC Journal, 2012, 63(4):1056-1062. (in Chinese)
[9] 岳大鑫, 刁雄, 李双跃, 等. 基于颗粒轨迹分析的分级机切割粒径计算[J]. 化工进展, 2012, 31(9):1919-1925. YUE D X, DIAO X, LI S Y, et al. Computation of classifier cut size based on analysis of particle tracks[J]. Chemical Industry and Engineering Progress, 2012, 31(9):1919-1925. (in Chinese)
[10] GALK J, PEUKERT W, KRAHNEN J. Industrial classification in a new impeller wheel classifier[J]. Powder Technology, 1999, 105(1-3):186-189.
[11] LIU R R, LIU J X, YU Y. Effects of axial inclined guide vanes on a turbo air classifier[J]. Powder Technology, 2015, 280:1-9.
[12] 李进春, 李双跃, 任朝富. 涡流分级机异形叶片的数值模拟与试验研究[J]. 中国粉体技术, 2009, 15(3):1-4. LI J C, LI S Y, REN C F, et al. Study on heteromorphic vanes of vortex air classifier by numerical simulations and experiments[J]. China Powder Science and Technology, 2009, 15(3):1-4. (in Chinese)
[13] 黄强, 于源, 刘家祥. 涡流分级机转笼结构改进及内部流场数值模拟[J]. 化工学报, 2011, 62(5):1264-1268. HUANG Q, YU Y, LIU J X. Improvement on rotor cage structure of turbo air classifier and numerical simulation of inner flow field[J]. CIESC Journal, 2011, 62(5):1264-1268. (in Chinese)
[14] YU Y, LIU J X, ZHANG K. Establishment of a prediction model for the cut size of turbo air classifiers[J]. Powder Technology, 2014, 254:274-280.
[15] ALTUN O, BENZER H. Selection and mathematical modelling of high efficiency air classifiers[J]. Powder Technology, 2014, 264:1-8.
[16] 张胜林, 谌永祥, 李双跃. 涡流空气分级机工艺参数对窄级别产品粒径分布和产率的影响[J]. 化工进展, 2014, 33(5):1113-1117, 1155. ZHANG S L, CHEN Y X, LI S Y. Effects of process parameters on particle size distribution and productivity of narrow level product in turbo air classifier[J]. Chemical Industry and Engineering Progress, 2014, 33(5):1113-1117, 1155. (in Chinese)
[17] AFOLABI L, AROUSSI A, ISA N M. Numerical modelling of the carrier gas phase in a laboratory-scale coal classifier model[J]. Fuel Processing Technology, 2011, 92(3):556-562.
[18] TONEVA P, EPPLE P, BREUER M, et al. Grinding in an air classifier mill-Part I:Characterisation of the one-phase flow[J]. Powder Technology, 2011, 211(1):19-27.
[19] TONEVA P, WIRTH K E, PEUKERT W. Grinding in an air classifier mill-Part II:Characterisation of the two-phase flow[J]. Powder Technology, 2011, 211(1):28-37.
[20] VUTHALURU H B, PAREEK V K, VUTHALURU R. Multiphase flow simulation of a simplified coal pulveriser[J]. Fuel Processing Technology, 2005, 86(11):1195-1205.
[21] KARUNAKUMARI L, ESWARAIAH C, JAYANTI S, et al. Experimental and numerical study of a rotating wheel air classifier[J]. AIChE Journal, 2005, 51(3):776-790.
[22] 祝良明, 李双跃. SLK分级机两种进风口的数值模拟与实验[J]. 化工进展, 2013, 32(3):533-537. ZHU L M, LI S Y. Numerical simulation and experimental research about two kinds of air inlets in SLK classifier[J]. Chemical Industry and Engineering Progress, 2013, 32(3):533-537. (in Chinese)
[23] HUANG Q, LIU J X, YU Y. Turbo air classifier guide vane improvement and inner flow field numerical simulation[J]. Powder Technology, 2012, 226:10-15.
[24] 孙占朋, 孙国刚, 杨晓楠, 等. 竖直涡旋向对卧轮式分级机流场及性能影响[J]. 化工进展, 2017, 36(6):2045-2050. SUN Z P, SUN G G, YANG X N, et al. Effect of vertical vortex direction on flow field and performance of horizontal turbo air classifier[J]. Chemical Industry and Engineering Progress, 2017, 36(6):2045-2050. (in Chinese)
[25] GUO L J, LIU J X, LIU S Z, et al. Velocity measurements and flow field characteristic analyses in a turbo air classifier[J]. Powder Technology, 2007, 178(1):10-16.
[26] FENG Y G, LIU J X, LIU S Z. Effects of operating parameters on flow field in a turbo air classifier[J]. Minerals Engineering, 2008, 21(8):598-604.
[27] XING W J, WANG Y Z, ZHANG Y, et al. Experimental study on velocity field between two adjacent blades and gas-solid separation of a turbo air classifier[J]. Powder Technology, 2015, 286:240-245.
[28] MORTENSEN H H, CALABRESE R V, INNINGS F, et al. Characteristics of batch rotor-stator mixer performance elucidated by shaft torque and angle resolved PIV measurements[J]. The Canadian Journal of Chemical Engineering, 2011, 89(5):1076-1095.
[29] RANADE V V, PERRARD M, LE SAUZE N, et al. Trailing vortices of Rushton turbine:PIV measurements and CFD simulations with snapshot approach[J]. Chemical Engineering Research and Design, 2001, 79(1):3-12.
[30] SHARP K V, ADRIAN R J. PIV study of small-scale flow structure around a Rushton turbine[J]. AIChE Journal, 2001, 47(4):766-778.
[1] 王振宇, 王磊. 多策略帝王蝶优化算法及其工程应用[J]. 清华大学学报(自然科学版), 2024, 64(4): 668-678.
[2] 雷旭鹏, 杨健, 徐孟怀, 朱江, 龚旻. 自适应广义酉变换近似消息传递算法[J]. 清华大学学报(自然科学版), 2024, 64(4): 700-711.
[3] 贾凡, 康舒雅, 江为强, 王光涛. 基于相似性的多用户漏洞推荐算法[J]. 清华大学学报(自然科学版), 2023, 63(9): 1399-1407.
[4] 毕军, 杜宇佳, 王永兴, 左小龙. 基于用户综合满意度的电动汽车充电诱导优化模型[J]. 清华大学学报(自然科学版), 2023, 63(11): 1750-1759.
[5] 黄爱玲, 王子吉安, 张哲, 李名杰, 宋悦. 考虑碳排放影响的大型机场陆侧多交通方式运力匹配模型[J]. 清华大学学报(自然科学版), 2023, 63(11): 1729-1740.
[6] 代鑫, 陈举师, 陈涛, 黄弘, 李志鹏, 余水平. 抽水蓄能电站应急排水多目标优化方法及算例分析[J]. 清华大学学报(自然科学版), 2023, 63(10): 1558-1565.
[7] 贾连印, 孔明, 王维晨, 李孟娟, 游进国, 丁家满. 数据偏斜分布下的二维Hilbert编解码算法[J]. 清华大学学报(自然科学版), 2022, 62(9): 1426-1434.
[8] 于京池, 金爱云, 潘坚文, 王进廷, 张楚汉. 基于GA-BP神经网络的拱坝地震易损性分析[J]. 清华大学学报(自然科学版), 2022, 62(8): 1321-1329.
[9] 杨敏, 李宏伟, 任怡凤, 张聪伟. 基于旅客异质性画像的公铁联程出行方案推荐方法[J]. 清华大学学报(自然科学版), 2022, 62(7): 1220-1227.
[10] 陈传刚, 胡瑾秋, 韩子从, 陈怡玥, 肖尚蕊. 恶劣环境条件下海外天然气管道站场事故演化知识图谱建模及预警方法[J]. 清华大学学报(自然科学版), 2022, 62(6): 1081-1087.
[11] 周伟, 李敏, 丘铭军, 张西龙, 柳江, 张洪波. 基于改进遗传算法的车身板件厚度优化[J]. 清华大学学报(自然科学版), 2022, 62(3): 523-532.
[12] 宋立强, 李辉, 杨磊, 杨清阁. FAST反射面单元质量评估算法及维护关键技术[J]. 清华大学学报(自然科学版), 2022, 62(11): 1833-1838.
[13] 关立文, 陈志雄, 刘春, 薛俊. 钻铆机器人静刚度建模及优化[J]. 清华大学学报(自然科学版), 2021, 61(9): 965-971.
[14] 刘华森, 陈恳, 王国磊. 基于粒子群算法的工件三维膨胀变形下转站参数优化[J]. 清华大学学报(自然科学版), 2021, 61(9): 979-985.
[15] 李泽林, 刘成颖. 基于Adaboost算法的环抛机盘面钝化程度分类[J]. 清华大学学报(自然科学版), 2021, 61(9): 986-993.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 《清华大学学报(自然科学版)》编辑部
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn